Гистология - В. Барсуков
- Категория: Научные и научно-популярные книги / Медицина
- Название: Гистология
- Автор: В. Барсуков
- Возрастные ограничения: Внимание (18+) книга может содержать контент только для совершеннолетних
Шрифт:
Интервал:
Закладка:
В. Ю. Барсуков
Гистология
1. Введение в курс гистологии. Органеллы клетки
Гистология – наука о строении, развитии и жизнедеятельности тканей живых организмов. Следовательно, гистология изучает один из уровней организации живой материи – тканевый.
Основным объектом гистологии в системе медицинского образования является организм здорового человека и потому данная учебная дисциплина именуется как гистология человека. Главной задачей гистологии как учебного предмета является изложение знаний о микроскопическом и ультрамикроскопическом строении клеток, тканей органов и систем здорового человека.
Задачей гистологии как науки является выяснение закономерностей строения различных тканей и органов для понимания протекающих в них физиологических процессов и возможности управления этими процессами.
Цитология – наука о строении, развитии и жизнедеятельности клеток. Следовательно, цитология изучает закономерности структурно-функциональной организации первого (клеточного) уровня организации живой материи. Клетка является наименьшей единицей живой материи, обладающей самостоятельной жизнедеятельностью и способностью к самовоспроизведению.
Клетка – это ограниченная активной мембраной, упорядоченная, структурированная система биополимеров, образующих ядро и цитоплазму, участвующих в единой совокупности метаболических и энергетиче-скихпроцессов.
Клетка – это живая система, состоящая из цитоплазмы и ядра и являющаяся основой строения, развития и жизнедеятельности всех животных организмов.
Основные компоненты клетки:
1) ядро;
2) цитоплазма.
По соотношению ядра и цитоплазмы (ядерно-цито-плазматическому отношению) клетки подразделяются на:
1) клетки ядерного типа (объем ядра преобладает над объемом цитоплазмы);
2) клетки цитоплазматического типа (цитоплазма преобладает над ядром).
По форме клетки бывают: круглыми (клетки крови), плоскими, кубическими или призматическими (клетки разных эпителиев), веретенообразными (гладкомы-шечные клетки), отростчатыми (нервные клетки) и др. Большинство клеток содержит одно ядро, однако в одной клетке может быть два, три и более ядер (многоядерные клетки). В организме имеются структуры (симпласты, синцитий), содержащие несколько десятков или даже сотен ядер. Морфология этих структур будет рассмотрена при изучении тканей.
Структурные компоненты цитоплазмы животной клетки:
1) плазмолемма (цитолемма);
2) гиалоплазма;
3) органеллы;
4) включения.
Плазмолемма – оболочка животной клетки, отграничивающая ее внутреннюю среду и обеспечивающая взаимодействие клетки с внеклеточной средой.
Органеллы – постоянные структурные элементы цитоплазмы клетки, имеющие специфическое строение и выполняющие определенные функции.
Митохондрии – наиболее обособленные структурные элементы цитоплазмы клетки, отличающиеся в значительной степени самостоятельной жизнедеятельностью.
2. Морфология и функции цитоплазмы клетки
Функции плазмолеммы:
1) разграничительная (барьерная);
2) рецепторная;
3) антигенная;
4) транспортная;
5) образование межклеточных контактов. Химический состав веществ плазмолеммы: белки, липиды, углеводы. В каждой липидной молекуле различают две части:
1) гидрофильную головку;
2) гидрофобные хвосты.
Гидрофобные хвосты липидных молекул связываются друг с другом и образуют билипидный слой. Гидрофильные головки соприкасаются с внешней и внутренней стороны. По выполняемой функции белки плазмолеммы подразделяются на:
1) структурные;
2) транспортные;
3) белки-рецепторы;
4) белки-ферменты;
5) антигенные детерминанты.
Различают следующие способы транспорта веществ:
1) способ диффузии веществ (ионов, некоторых низкомолекулярных веществ) через плазмолемму без затраты энергии;
2) активный транспорт веществ (аминокислот, нуклеотидов и др.) с помощью белков-переносчиков с затратой энергии;
3) везикулярный транспорт (производится посредством везикул (пузырьков)), подразделяется на эндоцитоз – транспорт веществ в клетку, экзоци-тоз – транспорт веществ из клетки. В свою очередь, эндоцитоз подразделяется на:
1) фагоцитоз – захват и перемещение в клетку;
2) пиноцитоз – перенос воды и небольших молекул.
В тех тканях, в которых клетки или их отростки плотно прилежат друг к другу (эпителиальная, гладкомышечная и др.), между плазмолеммами контактирующих клеток формируются связи – межклеточные контакты.
Типы межклеточных контактов:
1) простой контакт – 15–20 нм (связь осуществляется за счет соприкосновения макромолекул гликокаликсов);
2) десмосомный контакт – 0,5 мкм (с помощью скопления электроплотного материала в межмембранном пространстве);
3) плотный контакт (в этих участках межмембранные пространства отсутствуют, а билипидные слои соседних плазмолемм сливаются в одну общую били-пидную мембрану);
4) щелевидный, или нексусы, – 0,5–3 мкм (обе мембраны пронизаны в поперечном направлении белковыми молекулами, или коннексонами, содержащими гидрофильные каналы, через которые осуществляется обмен ионами и микромолекулами соседних клеток, чем и обеспечивается их функциональная связь);
5) синаптический контакт, или синапс, – специфические контакты между нервными клетками.
3. Морфология и функция органелы клетки
Классификация органелл:
1) общие органеллы, присущие всем клеткам и обеспечивающие различные стороны жизнедеятельности клетки;
2) специальные органеллы, имеющиеся в цитоплазме только определенных клеток и выполняющие специфические функции этих клеток.
В свою очередь, общие органеллы подразделяются на мембранные и немембранные. К мембранным органеллам относятся:
1) митохондрии;
2) эндоплазматическая сеть;
3) пластинчатый комплекс;
4) лизосомы;
5) пероксисомы.
К немембранным органеллам относятся:
1) рибосомы;
2) клеточный центр;
3) микротрубочки;
4) микрофибриллы;
5) микрофиламенты.
Форма митохондрий может быть овальной, округлой, вытянутой и даже разветвленной, но преобладает овально-вытянутая. Стенка митохондрии образована двумя билипидными мембранами, разделенными пространством в 10–20 нм. При этом внешняя мембрана охватывает по периферии всю митохондрию в виде мешка и отграничивает ее от гиалоплазмы. Функция митохондрий – образование энергии в виде АТФ.
Эндоплазматическая сеть (ЭПС) в разных клетках может быть представлена в форме уплощенных цистерн, канальцев или отдельных везикул. Стенка состоит из билипидной мембраны.
На наружной поверхности мембран зернистой ЭПС содержатся прикрепленные рибосомы.
Функции зернистой ЭПС:
1) синтез белков, предназначенных для выведения из клетки (на экспорт);
2) отделение (сегрегация) синтезированного продукта от гиалоплазмы;
3) конденсация и модификация синтезированного белка;
4) транспорт синтезированных продуктов в цистерны пластинчатого комплекса.
Пластинчатый комплекс Гольджи (сетчатый аппарат) представлен скоплением уплощенных цистерн и небольших везикул, ограниченных билипидной мембраной. Функции пластинчатого комплекса:
1) выведение из клетки синтезированных в ней продуктов (транспортная функция);
2) конденсация и модификация веществ, синтезированных в зернистой ЭПС;
3) образование лизосом (совместно с зернистой ЭПС);
4) участие в обмене углеводов;
5) синтез молекул, образующих гликокаликс цито-леммы;
6) синтез, накопление, выведение муцинов (слизи).
4. Морфология и функции органеллы клетки (продолжение)
Лизосомы – наиболее мелкие органеллы цитоплазмы, представляют собой тельца, ограниченные билипидной мембраной.
Функция лизосом – обеспечение внутриклеточного пищеварения, т. е. расщепление как экзогенных, так и эндогенных биополимерных веществ.
Классификация лизосом:
1) первичные лизосомы – электронно-плотные тельца;
2) вторичные лизосомы – фаголизосомы, в том числе аутофаголизосомы;
3) третичные лизосомы, или остаточные тельца. Пероксисомы – микротельца цитоплазмы (0,1—
1,5 мкм), сходные по строению с лизосомами, отличающиеся от них тем, что в их матриксе содержатся кристаллоподобные структуры, а в число белков-ферментов входит каталаза, разрушающая перекись водорода, образующуюся при окислении аминокислот.
Рибосомы – аппараты синтеза белка и полипептидных молекул.
По локализации подразделяются на:
1) свободные – находятся в гиалоплазме;
2) несвободные, или прикрепленные, – связаны с мембранами ЭПС.
Каждая рибосома состоит из малой и большой субъединиц. Каждая субъединица рибосомы состоит из рибосомальной РНК и белка – рибонуклеопротеида. Образуются субъединицы в ядрышке, а сборка в единую рибосому осуществляется в цитоплазме. Для синтеза белка отдельные рибосомы с помощью матричной (информационной) РНК объединяются в цепочки рибосом – полисомы. Клеточный центр (или цитоцентр, центросома) в неделящейся клетке состоит из двух основных структурных компонентов: