Модели разума. Как физика, инженерия и математика сформировали наше понимание мозга - Lindsay Grace
- Категория: Старинная литература / Прочая старинная литература
- Название: Модели разума. Как физика, инженерия и математика сформировали наше понимание мозга
- Автор: Lindsay Grace
- Возрастные ограничения: Внимание (18+) книга может содержать контент только для совершеннолетних
Шрифт:
Интервал:
Закладка:
@importknig
Перевод этой книги подготовлен сообществом "Книжный импорт".
Каждые несколько дней в нём выходят любительские переводы новых зарубежных книг в жанре non-fiction, которые скорее всего никогда не будут официально изданы в России.
Все переводы распространяются бесплатно и в ознакомительных целях среди подписчиков сообщества.
Подпишитесь на нас в Telegram: https://t.me/importknig
Грейс Линдсей
«Модели разума. Как физика, инженерия и математика сформировали наше понимание мозга»
Оглавление
Глава 1. Сферические коровы
Глава 2. Как нейроны получают спайки
Глава 3. Учимся вычислять перцептрон и искусственные нейронные сети
Глава 4. Создание и сохранение воспоминаний
Глава 5. Возбуждение и торможение. Сбалансированная сеть и колебания
Глава 6. Этапы развития зрения. Неокогнитрон и конволюционные нейронные сети
Глава 7. Взлом нейронного кода. Теория информации и эффективное кодирование
Глава 8. Движение в низких измерениях. Кинетика, кинематика и снижение размерности
Глава 9. От структуры к функции. Теория графов и сетевая нейронаука
Глава 10. Принятие рациональных решений. Вероятность и правило Байеса
Глава 11. Как вознаграждение руководит действиями. Временные различия и обучение под креплением
Глава 12. Великие единые теории мозга. Принцип свободной энергии, теория тысячи мозгов и интегральная теория информации
Математическое приложение
Глава 1. Сферические коровы
Что может предложить математика
Паук, плетущий паутину, Cyclosa octotuberculata обитает в нескольких местах в Японии и ее окрестностях. Размером с ноготь и покрытый маскировочными пятнами черного, белого и коричневого цветов, этот арахнид - хитроумный хищник. Сидя в центре своей искусно построенной паутины, он ждет, когда почувствует колебания нитей паутины, вызванные сопротивляющейся добычей. Как только паук чувствует движение, он устремляется в направлении сигнала, готовый сожрать свою добычу.
Иногда добыча чаще встречается в одном месте сети, чем в других. Умные хищники умеют отслеживать такие закономерности и использовать их в своих целях. Некоторые птицы, например, запоминают, где в последнее время было много пищи, и возвращаются в эти места в более позднее время. Cyclosa octotuberculata делает нечто похожее, но не идентичное. Вместо того чтобы запоминать удачные места - то есть не хранить их в памяти и не позволять им влиять на дальнейшее внимание - паук буквально вплетает эту информацию в свою паутину. В частности, он использует свои ноги, чтобы перетягивать шелковые нити, на которых недавно была обнаружена добыча, делая их более тугими. Натянутые нити более чувствительны к вибрациям, поэтому на них легче обнаружить будущую добычу.
Внося такие изменения в свою паутину, Cyclosa octotuberculata перекладывает часть бремени познания на окружающую среду. Он переносит свои текущие знания и память в компактную, но осмысленную физическую форму, оставляя в мире след, которым может руководствоваться в своих будущих действиях. Взаимодействующая система паука и его паутины умнее, чем паук мог бы надеяться быть сам по себе. Такая передача интеллекта окружающей среде известна как "расширенное познание".
Математика - это форма расширенного познания.
Когда ученый, математик или инженер записывает уравнение, он расширяет свои умственные способности. Они переносят свои знания о сложных отношениях на символы на странице. Записывая эти символы, они оставляют след своих размышлений для других и для себя в будущем. Ученые-когнитивисты предполагают, что пауки и другие мелкие животные полагаются на расширенное познание, потому что их мозг слишком ограничен для выполнения всех сложных умственных задач, необходимых для процветания в их среде. Мы ничем не отличаемся от них. Без таких инструментов, как математика, наша способность эффективно мыслить и действовать в этом мире сильно ограничена.
Математика делает нас лучше теми же способами, что и письменный язык. Но математика выходит за рамки повседневного языка, потому что это язык, который может выполнять реальную работу. Механика математики - правила перестановки, замены и расширения символов - не произвольна. Это систематический способ перенести процесс мышления на бумагу или в машину. Альфред Уайтхед, почитаемый математик XX века, с работами которого мы познакомимся в главе 3, перефразировал следующие слова: "Конечнаяцель математики - устранить всякую необходимость в разумном мышлении
Учитывая эту полезную особенность математики, в некоторых научных дисциплинах, в том числе в физике, сложилась этика, основанная на строгом количественном мышлении. Ученые в этих областях использовали возможности математики на протяжении веков. Они знают, что математика - единственный язык, достаточно точный и эффективный для описания мира природы. Они знают, что специализированная нотация уравнений умело сжимает информацию, делая уравнение похожим на картину: оно может стоить тысячи слов. Они также знают, что математика помогает ученым быть честными. При общении с помощью математического формализма предположения обнажаются, а двусмысленностям негде спрятаться. Таким образом, уравнения заставляют мыслить ясно и связно. Как писал Бертран Рассел (коллега Уайтхеда, с которым мы также познакомимся в главе 3): "Все расплывчато до такой степени, что вы не осознаете этого, пока не попытаетесь сделать его точным".
Последний урок, который усвоили ученые-количественники, заключается в том, что красота математики заключается в ее способности быть одновременно конкретной и универсальной. Уравнение может точно описать, как будет качаться маятник барометрических часов, установленных на лестнице для министров в Букингемском дворце; то же самое уравнение описывает электрические цепи, отвечающие за вещание радиостанций по всему миру. Когда между механизмами, лежащими в их основе, существует аналогия, уравнения служат воплощением этой аналогии. Как невидимая нить, связывающая воедино разрозненные темы, математика служит средством, с помощью которого достижения в одной области могут оказывать удивительное и непропорциональное влияние на другие, далеко отстоящие друг от друга области.
Биология - в том числе изучение мозга - не так быстро приняла математику, как некоторые другие области. Определенная часть биологов, по причинам, как хорошим, так и плохим, исторически смотрела на математику с некоторым скептицизмом. По их мнению, математика одновременно и слишком сложна, и слишком проста, чтобы быть полезной.
Некоторые биологи считают математику слишком сложной, потому что, будучи обученными практической работе по проведению лабораторных экспериментов, а не абстрактным деталям математических понятий, они воспринимают длинные уравнения как бессмысленные каракули на странице. Не видя в символах функции, они предпочитают обходиться без них. Как писал биолог Юрий Лазебник в 2002 году, призывая больше математики в своей области: "В биологии мы используем несколько аргументов, чтобы убедить себя, что проблемы, требующие вычислений, можно решить с помощью арифметики, если хорошенько постараться и провести еще одну серию экспериментов".
Тем не менее, математика также считается слишком простой, чтобы отразить все богатство биологических явлений. Старая