Категории
Самые читаемые
onlinekniga.com » Научные и научно-популярные книги » История » Расследование и предупреждение техногенных катастроф. Научный детектив - Юрий Петров

Расследование и предупреждение техногенных катастроф. Научный детектив - Юрий Петров

Читать онлайн Расследование и предупреждение техногенных катастроф. Научный детектив - Юрий Петров

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 6 7 8 9 10 11 12 13 14 ... 21
Перейти на страницу:

До сегодняшнего дня мне не известно — запрещено применение опаснейшей перекиси водорода на подводном флоте России, или не запрещено. Если не запрещено, то надо ждать следующих неизбежных техногенных катастроф.

Эти примеры еще и еще раз показывают — к каким страшным последствиям приводит пренебрежение к предостережениям науки.

Если граждане России не хотят гибнуть в техногенных катастрофах, они должны уважать науку и слушать ее. И особенно это должны делать представители власти и депутаты: они летают чаще рядовых граждан, им и предстоит первыми гибнуть в авиакатастрофах, предотвращать которые не желают федеральные агентства и инспектора, призванные следить за безопасностью жизни людей. Депутатам надо следить за деятельностью органов власти (и особенно — контролирующих органов), требовать от них исполнения своих обязанностей. А гражданам России на выборах надо выбирать таких депутатов и такие политические партии, которые заботятся о жизнях граждан, борются с причинами техногенных катастроф и требуют такой же борьбы от представителей власти.

ЧАСТЬ II

§ 10. Разъяснение загадок

В предыдущих разделах основной задачей автора было обеспечение доступности изложения. Не использовались никакие математические средства, кроме знакомых каждому по средней школе простейших алгебраических уравнений. При этом, естественно, не удавалось разъяснить некоторые тонкие вопросы: почему, например, аварии, причиной которых является встреча с «особым» объектом, обладают особенными чертами, описанными в параграфе 8 и позволяющими правильно определить причину аварии. Остались, возможно, не до конца понятными (а может быть и загадочными) некоторые другие вопросы.

В настоящей второй части мы разъясним эти загадки, но для понимания их от читателя потребуется — в отличие от первой части — знание математики в объеме технического вуза и, в частности, знакомство с простейшими линейными дифференциальными уравнениями с постоянными коэффициентами и методами расчета устойчивости их решений.

Рассмотрим электропривод постоянного тока, математической моделью которого является простое дифференциальное уравнение первого порядка:

                                                            (9)

где ω — частота вращения, і — ток якоря, который в регулируемых приводах является управляющим воздействием, Мс — момент сопротивления исполнительного механизма, m — механическая постоянная времени электропривода, численно равная времени его разгона от нулевой частоты вращения до номинальной при номинальном токе якоря и нулевом моменте сопротивления.

Обозначим через χ1, х2 и х3 отклонения частоты вращения, тока якоря и момента сопротивления Мc от их номинальных значений, а коэффициент к примем равным к = 2. Получим уравнение электропривода «в отклонениях»:

тх1 = -2х1 +х2 + х3                                                                         (10)

Если момент сопротивления используемого механизма является стационарным случайным процессом со спектром

                                                                  (11)

то для простейшего случая α = 1 переменная х3 и ее производная х4 будут удовлетворять уравнениям:

                                                                     (12)

Система трех дифференциальных уравнений (10)—(12) является математической моделью электропривода как объекта управления. Колебания частоты вращения можно уменьшить за счет регулятора с обратной связью. Пусть в этом регуляторе управляющее воздействие х2 формируется в функции от остальных переменных по закону:

х2 = -X1 - 2х3 —х4                                                                        (13)

Тогда система четырех уравнений (10), (12), (13) является математической моделью замкнутой системы управления. Уравнения (10)—(12) типичны для многих электроприводов, а формируя управляющее воздействие в виде (13) мы следуем известным рекомендациям А. М. Летова. Для удобства дальнейших расчетов мы округлили параметры электропривода до целых чисел, но в целом система уравнений (10), (12), (13) отражает вполне типичную практическую ситуацию.

Исследуем устойчивость этой системы и влияние на устойчивость изменений параметра m -механической постоянной времени электропривода. Если текущее время t, входящее в уравнения (10), (12), (13), измерять в долях механической постоянной времени, то номинальное значение параметра m будет равно единице, но в ходе эксплуатации электропривода возможен, разумеется «дрейф» этого параметра и отклонение его от значения m = 1.

Устойчивость замкнутой системы зависит от корней характеристического полинома (т. е. от «собственных значений» системы), а характеристический полином системы (10), (12), (13) равен легко вычисляемому определителю:

       (14)

Мы убеждаемся, что характеристический полином замкнутой системы имеет три корня (три «собственных значения»):

  

(один из корней — кратный) и эти корни отрицательны для всех т в диапазоне

  

Таким образом, замкнутая система устойчива и сохраняет устойчивость не только при малых, но и при больших отклонениях параметра т от номинального значения т = 1.

Решения системы уравнений (10), (12), (13) имеют вид

                                                                  (15)

где C1, C2, C3 — постоянные интегрирования. Для х2, х3, х4 формулы аналогичны. Мы убеждаемся, что отклонение х быстро затухает с течением времени. Система устойчива для любых т> 0 .

Однако момент сопротивления х3 и особенно его производную х4 очень трудно непосредственно измерить и ввести в канал обратной связи. Поэтому целесообразно исключить из уравнения объекта управления и регулятора переменные х и х путем эквивалентных преобразований. Проделав их, придем к уравнениям (где

  

является символом оператора дифференцирования):

[mD3 + (2 + 2 m)D2 + (4 + m)D + 2]x1 = (D +1)2 x2                                                              (16)

[mD2 + (2 + 2m)D + 5]x1 = (D + 1)x2                                                                       (17)

Уравнение (16) является уравнением объекта управления, уравнение (17) — уравнением регулятора, который на этот раз для формирования управляющего воздействия х2 использует легко доступную для непосредственного измерения переменную х1.

Для исследования устойчивости системы (16)—(17) достаточно найти корни ее характеристического полинома.

И вот здесь исследователей подстерегала трудность, которая надолго задержала правильный ответ о причинах техногенных катастроф, связанных с «аналитически сконструированными» регуляторами, и укоротила жизнь А. М. Летова: если вычислять характеристический полином системы (16)—(17) по общим математическим правилам как определитель:

                              (18)

то он, как легко проверить, будет равен определителю (14) и мы снова должны будем сделать вывод о том, что замкнутая система устойчива и сохраняет устойчивость при «дрейфе» параметра m .

Однако этот вывод будет ошибочен! Дело в том, что объект управления (электропривод) и регулятор — это разные (хотя и расположенные рядом) устройства, поэтому «дрейф» их параметров может идти независимо друг от друга, образуя самые причудливые комбинации. Рассмотрим простейший (но возможный) случай: параметры регулятора остались равными номинальным значениям (соответствующим т — 1), а в объекте управления механическая постоянная времени немного изменилась. Для анализа устойчивости этого случая надо вычислить определитель:

                           (19)

Пусть m = 1 + ε, где  ε  - малое число и можно пренебречь членами с ε2, ε3 и др. Тогда сразу видно, что при ε > 0 замкнутая система неустойчива, в решении системы, кроме членов, отраженных формулой (15), появляется очень быстро растущий четвертый член вида

                                                                                                        (20)

1 ... 6 7 8 9 10 11 12 13 14 ... 21
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Расследование и предупреждение техногенных катастроф. Научный детектив - Юрий Петров.
Комментарии