Беседы о рентгеновских лучах (второе издание) - Павел Власов
Шрифт:
Интервал:
Закладка:
Откуда же берутся эти смертоносные кванты?
При взрыве мгновенно выделяется огромная энергия.
Возникает высокотемпературная плазма, которая, как мы уже знаем, дает тепловое рентгеновское и гаммаизлучение. Но это еще не все. Огненный шар быстро исчезает, а жесткая радиация продолжает поражать население. Значит, остаются ее носители. Это радиоактивные изотопы. Они образуются при делении ядер урана или плутония, разваливающихся на осколки, и разбрасываются по всей округе. Впрочем, и это не все, Мощные потоки частиц, пронизывая окружающую среду, делают радиоактивными еще недавно безобидные вещества, содержащиеся в воздухе, почве, водах, постройках. Даже в организме. Иначе говоря, появляется наведенная радиоактивность.
Подобное заражение местности губительно даже для тех, кто совершенно не пострадал от взрыва самого по себе, приехав, скажем, издалека через много часов или дней после бомбардировки. Кроме того, радиоактивные изотопы накапливаются в организме, попадая внутрь при еде и дыхании.
Минимальная абсолютно летальная доза для человека — 600 рентген. Но при длительных воздействиях даже 0,1 рентгена в день может вызвать образование опухолей. Следует добавить, что в 1945 году никто этого ведать не ведал. Хотя икс-лучи исследуются с 1895 года, они явились тогда, ровно через полвека, отнюдь не добрыми старыми знакомыми, а нежданно-негаданно зловещими таинственными невидимками.
Но самыми мощными на Земле источниками рентгеновской радиации стали взрывы новых сверхбомб — термоядерных. Среди них есть просто чудовищные: во много десятков мегатонн, эквивалентные тысячам таких, что растерзали Хиросиму и Нагасаки.
Если же говорить о постоянно действующих источниках, то самыми мощными на Земле являются опять-таки не рентгеновские аппараты, а реакторы атомных электростанций. Стоит, однако, подчеркнуть со всей категоричностью: мирный атом — добрый атом. Преувеличенные страхи, связанные с ним, совершенно беспочвенны. Они проистекают разве лишь от неосведомленности. В ядерной энергетике не больше опасностей, чем в обычной, классической.
Альфа-частицы (ядра гелия), испускаемые радиоизотопами, полностью поглощаются листом газетной бумаги, резиновыми перчатками или 10-сантиметровым слоем воздуха. Бета-частицы (электроны) — экраном сантиметровой толщины из алюминия, а то и обычного стекла или плексигласа. Наиболее «пробивные» из корпускул — нейтроны. Но и от них есть испытанные простые средства — водные или парафиновые преграды.
Ну а всепроникающее рентгеновское и гамма-излучение? Оно задерживается, как известно, свинцовой броней. Или иной, скажем, бетонной, которая, естественно, должна быть мощнее.
Толщина стен в зависимости от материала и другие параметры защиты точно вычисляются по формулам, за которыми не только математически строгая теория, не только лабораторный физический эксперимент, но и многолетняя повседневная практика атомной энергетики. Разумеется, во всех помещениях атомных электростанций и на окружающей территории налажен четкий контроль за выполнением всех требований, предъявляемых техникой безопасности.
Есть такая дисциплина — дозиметрия. Ее название вроде бы говорит само за себя. Но это не просто-напросто измерение доз. Перед нами обширная область прикладной физики, занятая многоразличными проблемами. Тут и всевозможные величины, которыми характеризуется действие ионизирующих излучений га живую или неживую природу. Тут и методы, приборы, позволяющие точно оценивать все необходимые величины и эффекты (в частности, дозы).
А все начиналось с рентгенометрии. Ее колыбелью стала лаборатория, где в 1895 году были открыты икс-лучи. Наметившееся уже тогда стремление точно описать их поведение поставило нелегкую задачу, которая к тому же усложнялась. После того, как мир узнал о радиоактивности (1896 г.), выяснилось, что есть и другие всепроникающие таинственные невидимки. Например, гамма-радиация. Ее тоже надо было «обмерить». Оказалось, правда, что по своему действию на вещества и существа она во многом подобна рентгеновской.
Постепенно сформировалась особая дисциплина — рентгенометрия, которая занялась обоими излучениями, и только ими. По сути, она не что иное, как часть дозиметрии, охватывающей все разновидности ионизирующего излучения, но автономная, относительно самостоятельная.
Основным ее количественным критерием стал рентген. Сейчас это внесистемная единица экспозиционной дозы, определяемая по степени ионизации воздуха (а если точно, то рождающая в каждом его кубическом сантиметре 2,08·109 пар ионов, суммарный заряд которых равен одной единице количества электричества каждого знака).
Появились разнообразнейшие дозиметры — стационарные, переносные, в частности, мини-приборчики индивидуального пользования, вставляющиеся в карман, как авторучка. Многие из них градуируются в рентгенах. Есть и счетчики, регистрирующие кванты невидимой радиации в виде отдельных импульсов. От этих детекторов ведут свою генеалогию рентгеновские телескопы.
Короче говоря, крохотный росток на древе знаний, проклюнувшийся более 80 лет назад в лаборатории В. Рентгена, дал могучую ветвь науки и техники. Немалый вклад в развитие этой отрасли внесли советские ученые: П. Лукирский, В. Дукельский, Д. Наследов, К. Аглинцев, И. Поройков…
Так мы незаметно подошли к рубежам рентгенологии. Но именно здесь нельзя не почувствовать, сколь многое находится за ее пределами, за сугубо медицинскими и ветеринарными аспектами разнообразнейшей проблематики, вовсе не сводящейся к распознавании и лечению болезней. И еще нельзя не заметить: своими нынешними сдвигами она во многом обязана импульсам извне, исходившим от ядерной физики, которая особенно быстро, семимильными шагами, двинулась вперед в атомный век.
Если вернуться к ядерной энергетике, то, очевидно, решение вопроса о мирном сосуществовании людей и атомов имеет под собой прочный фундамент, теоретический и практический.
Доза, которую можно получить на советских атомных электростанциях и вокруг них, практически не отличается от фоновой, хотя внутри реактора она была бы в десятки миллиардов раз выше предельно допустимой. Но там работают автоматы. Персонал надежно защищен мощной техникой безопасности, проверенной десятилетиями опыта с тех пор, как в 1954 году в СССР была пущена первая в мире атомная станция.
В сборнике «Физики шутят» английский ученый О. Фриш, перенесясь в 40905 год, юмористическим пером рисует «перевернутую картину» опасений, связанных с освоением нового, таинственного: «Недавно найденный сразу в нескольких местах уголь (черные окаменевшие остатки древних растений) открывает интересные возможности создать неядерную энергетику… Главная трудность организовать самоподдерживающийся и контролируемый процесс окисления… Возможно, хотя и маловероятно, что подача окислителя выйдет из-под контроля. Это приведет к расплавлению котла и выделению огромного количества ядовитых газов. Последнее обстоятельство является главным аргументом против угля и в пользу ядерных реакторов, которые за последние тысячелетия доказали свою безопасность».
Ну а если всерьез, то атомные электростанции гораздо меньше загрязняют биосферу. Еще чище будет термоядерная энергетика, когда люди научатся управлять процессом, покамест протекающим лишь бесконтрольно, при взрыве водородной бомбы. Речь идет уже не о делении тяжелых ядер, как в урановом «котле», а о синтезе легких (изотопов водорода) с образованием безобидного гелия. Отходов — никаких.
Уже действуют многочисленные экспериментальные установки, шаг за шагом приближающие нас к этой цели. И опять-таки перед нами источники рентгеновской радиации, притом куда более сильные, чем имеющиеся в арсенале здравоохранения. Когда физики получат плазму нужных кондиций, чтобы, наконец, «пошел термояд», каждый литр ее станет эквивалентен тысячам обычных рентгеновских трубок.
Работая на одной из таких установок, группа советских ученых во главе с академиком Л. Арцимовичем сделала в 1952 году открытие, удостоенное впоследствии Ленинской премии. Было обнаружено, что при разряде в дейтериевой плазме возникают потоки нейтронов.
Поначалу думали: уж не пошла ли наконец долгожданная реакция синтеза? Многое говорило в пользу такого предположения.
Вскоре, однако, установили, что одновременно рождаются жесткие рентгеновские лучи. Именно это стало наиболее убедительным аргументом против. По-видимому, как эти кванты, гак и эти нейтроны вызывает к жизни нечто иное. Вероятно, дело обстоит так. Одни ядра дейтерия (тяжелого водорода), разогнанные внутри вакуумной камеры по неизвестной пока причине, сшибаются с другими, а при столь мощных столкновение как раз и выбиваются, словно искры от удара, корпускулы (нейтроны) и волны.