Физика для всех. Движение. Теплота - Александр Китайгородский
Шрифт:
Интервал:
Закладка:
v = sqrt(gR) = sqrt(8,9·6,6·106) = 7700 м/с = 7,7 км/с.
Минимальная скорость, необходимая для того, чтобы горизонтально брошенное тело стало спутником Земли, называется первой космической скоростью. Из приведенного примера видно, что эта скорость близка к 8 км/с.
III. Движение с «неразумной» точки зрения
Принцип эквивалентности
В предыдущей главе мы отыскали «разумную точку зрения» на движение. Правда, «разумных» точек зрения, которые мы назвали инерциальными системами, оказалось бесконечное множество.
Теперь, вооруженные знанием законов движения, мы можем поинтересоваться, как выглядит движение с «неразумных» точек зрения. Интерес к тому, как живется жителям неинерциальных систем, вовсе не праздный, хотя бы уже потому, что мы сами являемся обитателями такой системы.
Представим себе, что мы, захватив измерительные приборы, погрузились на межпланетный корабль и отправились путешествовать в мир звезд.
Быстро бежит время. Солнце уже стало похоже на маленькую звездочку. Двигатель выключен, корабль далеко от притягивающих тел.
Посмотрим теперь, что делается в нашей летающей лаборатории. Почему висит в воздухе и не падает на пол сорвавшийся с гвоздика термометр? В каком странном положении застыл отклонившийся от «вертикали» маятник, висящий на стене. Мы тут же находим разгадку: ведь корабль не на Земле, а в межпланетном пространстве. Предметы потеряли вес.
Полюбовавшись на необычную картину, мы решаем изменить курс. Нажатием кнопки включаем реактивный двигатель, и вдруг… предметы, окружающие нас, словно ожили. Все тела, которые не были наглухо закреплены, пришли в движение. Термометр упал, маятник начал качаться и, постепенно успокаиваясь, пришел в вертикальное положение, подушка послушно прогнулась под лежащим на ней чемоданом. Посмотрим на приборы, которые указывают, в какую сторону наш корабль начал ускоренное движение. Конечно, оно направлено вверх. Приборы показывают, что мы выбрали движение с небольшим для возможностей корабля ускорением 9,8 м/с2. Наши ощущения вполне обычны, мы чувствуем себя, как на Земле. Но почему так? По-прежнему невообразимо далеко находится корабль от притягивающих масс, нет сил притяжения, а предметы приобрели вес.
Выпустим из рук шарик и измерим, с каким ускорением он падает на пол корабля. Оказывается, ускорение равно 9,8 м/с2. Эту цифру мы только что прочли на приборах, измеряющих ускорение ракеты. Корабль движется с таким же ускорением вверх, с каким тела в нашей летучей лаборатории падают вниз.
Но что такое «верх» и «низ» в летящем корабле? Как просто дело обстояло, когда мы жили на Земле. Там небо было верхом, Земля была низом. А здесь? У нашего верха есть неоспоримый признак – это направление ускорения ракеты.
Смысл наших наблюдений понять нетрудно: на шарик, выпущенный из рук, никакие силы не действуют. Шарик движется по инерции. Это ракета движется с ускорением по отношению к шарику, и нам, находящимся в ракете, кажется, что шарик «падает» в сторону, обратную направлению ускорения ракеты. Разумеется, ускорение этого «падения» равно по величине истинному ускорению ракеты. Ясно также, что все тела в ракете будут «падать» с одинаковым ускорением.
Из всего сказанного мы можем сделать интересный вывод. В ускоренно движущейся ракете тела начинают «весить». При этом «сила притяжения» направлена в сторону, противоположную направлению ускорения ракеты, а ускорение свободного «падения» равно по величине ускорению движения реактивного корабля. И самое замечательное то, что практически мы не можем отличить ускоренное движение системы от соответствующей силы тяжести*7. Находясь в космическом корабле с закрытыми окнами, мы не могли бы узнать, покоится ли он на Земле или движется с ускорением 9,8 м/с2. Равноценность ускорения и действия силы тяжести называется в физике принципом эквивалентности.
Этот принцип, как мы сейчас увидим на множестве примеров, позволяет быстро решать многие задачи, добавляя к реальным силам фиктивную силу тяжести, существующую в ускоренно движущихся системах.
Первым примером может служить лифт. Захватим с собой пружинные весы с гирями и отправимся на лифте вверх. Следим за поведением стрелки весов, на которые положена килограммовая гиря (рис. 19). Подъем начался; мы видим, что показания весов возросли, как будто гиря стала весить больше килограмма. Принципом эквивалентности легко объяснить этот факт. Во время движения лифта вверх с ускорением a возникает дополнительная сила тяжести, направленная вниз. Так как ускорение этой силы равно a, то дополнительный вес равен mа. Значит, весы покажут вес mg + mа. Ускорение кончилось, и лифт движется равномерно – пружина вернулась в исходное положение и показывает 1 кГ веса. Приближаемcя к верхнему этажу, движение лифта замедляется. Что будет теперь с пружиной весов? Ну, конечно, теперь груз весит меньше одного килограмма. При замедлении движения лифта вектор ускорения смотрит вниз. Значит, дополнительная, фиктивная сила тяжести направлена вверх, в сторону, противоположную направлению земного тяготения. Теперь a отрицательно, и весы показывают величину, меньшую mg. После остановки лифта пружина возвращается в исходное положение. Начнем спуск. Движение лифта ускоряется; вектор ускорения направлен вниз, значит, дополнительная сила тяжести направлена вверх. Сейчас груз весит меньше килограмма. Когда движение станет равномерным, дополнительная тяжесть пропадет, и перед окончанием нашего путешествия на лифте – при замедленном движении вниз – груз будет весить больше килограмма.
Неприятные ощущения, испытываемые при быстром ускорении и замедлении движения лифта, связаны с рассмотренным изменением веса.
Если лифт падает с ускорением, то тела, находящиеся в нем, становятся как бы легче. Чем больше это ускорение, тем больше потеря веса. Что же произойдет при свободном падении системы? Ответ ясен: в этом случае тела перестанут давить на подставку – перестанут весить: сила притяжения Земли будет уравновешиваться дополнительной силой тяжести, существующей в такой свободно падающей системе. Находясь в таком «лифте», можно спокойно положить на плечи тонну груза.
В начале этого параграфа мы описывали жизнь «без веса» в межпланетном корабле, вышедшем за пределы сферы тяготения. При равномерном и прямолинейном движении в таком корабле веса нет, но то же самое происходит и при свободном падении системы. Значит, нет нужды выходить за пределы сферы тяготения: веса нет во всяком межпланетном корабле, который движется с выключенным двигателем. Свободное падение приводит к потере веса в подобных системах. Принцип эквивалентности привел нас к выводу о почти (см. примечание на стр. 56) полной равноценности системы отсчета, движущейся прямолинейно и равномерно вдали от действия сил притяжения, и системы отсчета, свободно падающей под действием тяжести. В первой системе веса нет, а во второй «вес книзу» уравновешивается «весом кверху». Никакой разницы между системами мы не найдем.
В искусственном спутнике Земли жизнь «без веса» наступает с того момента, когда корабль выведен на орбиту и начинает свое движение без действия ракеты.
Первым межпланетным путешественником была собака Лайка, а вскоре и человек освоился с жизнью «без веса» в кабине космического корабля. Первым на этом пути был советский летчик-космонавт Ю.А. Гагарин.
Нельзя назвать жизнь в кабине корабля обычной. Много изобретательности и выдумки понадобилось, чтобы сделать послушными вещи, столь легко подчиняющиеся силе тяжести. Можно ли, например, налить воды из бутылки в стакан? Ведь вода льется «вниз» под действием тяжести. Можно ли готовить пищу, если нельзя нагреть на плитке воду? (Теплая вода не будет перемешиваться с холодной.) Как писать карандашом по бумаге, если легкого толчка карандаша о стол достаточно, чтобы откинуть пишущего в сторону? Ни спичка, ни свеча, ни газовая горелка гореть не будут, так как сгоревшие газы не будут подниматься вверх (ведь верха-то нет!) и не дадут доступа кислороду. Пришлось подумать даже о том, как обеспечить нормальное протекание естественных процессов, происходящих в организме человека, – ведь эти процессы «привыкли» к силе земного тяготения.
Теперь займемся физическими наблюдениями в ускоренно движущемся автобусе или трамвае. Особенность этого примера, отличающая его от предыдущего, состоит в следующем. В примере с лифтом дополнительная тяжесть и притяжение Землей были направлены вдоль одной линии. В тормозящем или набирающем скорость трамвае дополнительная сила тяжести направлена под прямым углом к земному притяжению. Это вызывает своеобразные, хотя и привычные, ощущения у пассажира. Если трамвай набирает скорость, то возникает дополнительная сила, направленная в сторону, обратную направлению движения. Сложим эту силу с силой земного притяжения. В сумме на человека, находящегося в вагоне, будет действовать сила, направленная под тупым углом к направлению движения. Находясь в вагоне, как обычно, лицом к движению, мы ощутим, что наш «верх» переместился. Чтобы не упасть, мы захотим стать «вертикально» – так, как показано на рис. 20,a. Наша «вертикаль» косая. Она наклонена под острым углом к направлению движения. Если же человек будет стоять не держась ни за что, он обязательно упадет назад.