Большая Советская энциклопедия (АН) - БСЭ
Шрифт:
Интервал:
Закладка:
А. о. п. включает раннее начало наблюдения за беременной, раннее выявление, лечение и профилактику инфекционных, сердечно-сосудистых и других заболеваний, токсикозов беременности, рациональное питание, запрещение приёма лекарств и рентгенооблучение без назначения врача, запрещение употребления алкоголя и табака, достаточное кислородное насыщение организма матери, пребывание её в специальном санатории или доме отдыха для беременных, правильный режим труда и отдыха, лечебную физкультуру, психопрофилактическую подготовку к родам, посещение будущей матерью школы материнства. Большое значение имеет квалифицированная помощь при родах и др. У беременной заблаговременно производят исследование группы крови, выявление резус-фактора и т. п.
А. о. п. осуществляется всей системой советского здравоохранения, охраной материнства и детства с их профилактической направленностью. А. о. п. обусловлена также специальным законодательством по охране женского труда вообще и беременных в частности — отпуском и пособием по беременности и родам и другими мероприятиями. Контроль за выполнением всех мероприятий и непосредственное проведение их обеспечивают женские консультации, социально-правовые кабинеты при них, родильные дома и медико-генетические консультации, осуществляющие профилактику и лечение наследственных болезней.
Лит.: Научная сессия по проблеме «Антенатальный период жизни и проблемы его охраны». Тезисы докладов, М., 1961; Фламм Г., Пренатальные инфекции человека, пер. с нем., М., 1962; Женская консультация, под ред. Л. С. Персианинова, Минск, 1966.
А. Л. Каплан.
Антенна
Анте'нна, устройство для излучения и приёма радиоволн. Передающая А. преобразует энергию электромагнитных колебаний высокой частоты, сосредоточенную в выходных колебательных цепях радиопередатчика, в энергию излучаемых радиоволн. Преобразование основано на том, что, как известно, переменный электрический ток является источником электромагнитных волн. Это свойство переменного электрического тока впервые установлено Г. Герцем в 80-х гг. 19 в. на основе работ Дж. Максвелла (подробнее см. Излучение и приём радиоволн). Приёмная А. выполняет обратную функцию — преобразование энергии распространяющихся радиоволн в энергию, сосредоточенную во входных колебательных цепях приёмника. Формы, размеры и конструкции А. разнообразны и зависят от длины излучаемых или принимаемых волн и назначения А. Применяются А. в виде отрезка провода, комбинаций из таких отрезков, отражающих металлических зеркал различной конфигурации, полостей с металлическими стенками, в которых вырезаны щели, спиралей из металлических проводов и др.
Основные характеристики и параметры А. У большинства передающих А. интенсивность излучения зависит от направления или, как говорят, А. обладает направленностью излучения. Это свойство А. графически изображается диаграммой направленности, показывающей зависимость от направления напряжённости электрического поля излученной волны (измеренной на большом и одинаковом расстоянии от А.). Направленность излучения А. приводит к повышению напряжённости поля волны в направлении максимального излучения и таким образом создаёт эффект, эквивалентный эффекту, вызываемому увеличением излучаемой мощности. Для количественной оценки эквивалентного выигрыша в излучаемой мощности введено понятие коэффициента направленного действия (КНД), показывающего, во сколько раз нужно увеличить мощность излучения при замене данной реальной А. гипотетической ненаправленной А. (изотропным излучателем), чтобы напряжённость электромагнитного поля осталась неизменной. Не вся подводимая к А. мощность излучается. Часть мощности теряется в проводах и изоляторах А., а также в окружающей А. среде (земле, поддерживающих А. конструкциях и др.). Отношение излучаемой мощности ко всей подводимой называется кпд А. Произведение КНД на кпд называется коэффициентом усиления (КУ) А.
Приёмная А. также характеризуется формой диаграммы направленности, КНД, кпд и КУ. Её диаграмма направленности изображает зависимость эдс, создаваемой А. на входе приёмника, от направления прихода волны. При этом предполагается, что напряжённость поля в точке приёма не зависит от направления прихода волны. КНД показывает, во сколько раз вводимая А. во входную цепь приёмника мощность при приходе волны с направления максимального приёма больше среднего (по всем направлениям) значения мощности, при условии, что напряжённость поля не зависит от направления прихода волны. КНД приёмной А. характеризует её пространственную избирательность, определяющую возможность выделения принимаемого сигнала на фоне помех, создаваемых радиосигналами, идущими с разных направлений и порождаемых различными источниками (см. Помехи радиоприёму). Под кпд приёмной А. подразумевают кпд этой же А. при использовании её для передачи. КУ приёмной А. определяется как произведение КНД на кпд. Форма диаграмм направленности, КНД и КУ любой А. одинаковы в режиме передачи и в режиме приёма. Это свойство взаимности процессов передачи и приёма позволяет ограничиться описанием характеристик А. только в режиме передачи.
Теория и методы построения А. базируются на теории излучения элементарного электрического вибратора (рис. 1, а), опубликованной Г. Герцем в 1889. Под элементарным электрическим вибратором подразумевают проводник, длиной во много раз меньшей длины излучаемой волны λ, обтекаемый током высокой частоты с одинаковой амплитудой и фазой на всей его длине. Его диаграмма направленности в плоскости, проходящей через ось, имеет вид восьмёрки (рис. 1, б). В плоскости, перпендикулярной оси, направленность излучения отсутствует, и диаграмма имеет форму круга (рис. 1, в). КНД элементарного вибратора равен 1,5. Примером практического выполнения элементарного вибратора является Герца вибратор. Любая А. может рассматриваться как совокупность большого числа элементарных вибраторов.
Первая практическая А. в виде несимметричного вибратора была предложена изобретателем радио А. С. Поповым в 1895. Несимметричный (относительно точки подвода энергии) вибратор представляет собой длинный вертикальный провод, между нижним концом которого и заземлением включается передатчик или приёмник (рис. 2, а). Заземление обычно выполняется в виде системы радиально расположенных проводов, которые закапывают в землю на небольшую глубину. Эти провода соединены общим проводом с одной из клемм передатчика или приёмника. Диаграмма направленности вертикального несимметричного вибратора, длина которого мала по сравнению с λ, имеет в вертикальной плоскости (при высокой электрической проводимости земли) вид полувосьмёрки (рис. 2, б); в горизонтальной — форму круга. КНД такой А. равен 3. Как видно из рис. 2, б, вертикальный несимметричный вибратор обеспечивает интенсивное излучение вдоль поверхности земли и поэтому получил широкое применение в радиосвязи и радиовещании на длинных и средних волнах. На этих волнах свойства почвы близки к свойствам высокопроводящей среды и обычно требуется обеспечить интенсивное излучение вдоль поверхности земли.
Одной из важных характеристик А. такого типа является сопротивление излучения Rизл. При длине вибратора l £ 1/4l под сопротивлением излучения обычно подразумевают отношение излученной мощности к квадрату эффективного значения силы тока, измеренного у нижнего конца вибратора. Чем больше Rизл, тем больше излучаемая мощность (при заданном токе в вибраторе), выше кпд, шире полоса пропускаемых частот и ниже максимальная напряжённость электрического поля, возникающая у поверхности провода А. при заданной подводимой мощности. Т. к. максимальная напряжённость поля, во избежание ионизации окружающего воздуха и пробоя изоляторов, поддерживающих А., не должна превосходить определённого значения, то чем больше Rизл, тем больше максимальная мощность, которую можно подвести к А. Rизл увеличивается с ростом отношения l/λ, а также с повышением равномерности распределения тока по длине вибратора. Расширение полосы пропускаемых частот и снижение макс. напряжённости поля достигаются также увеличением диаметра провода А. или применением нескольких параллельно соединённых проводов (снижение волнового сопротивления А.).
А. длинных волн. В области длинных волн совершенствование А. шло по линии увеличения их геометрической высоты, доходившей до 300 м, выравнивания распределения тока путём добавления горизонтальных и наклонных проводов (Т-образные, Г-образные и зонтичные А., рис. 3) и выполнения вертикальных и горизонтальных частей А. из нескольких параллельных проводов с целью снижения волнового сопротивления. КНД длинноволновых А. » 3. По мере укорочения λ облегчается строительство А. высотой, соизмеримой с λ. При этом нет надобности в добавлении горизонтальных или наклонных проводов. Поэтому в 30-х гг. на радиовещательных станциях, работающих в диапазоне длин волн от 200 до 2000 м, стал применяться вертикальный несимметричный вибратор в виде изолированных от земли свободностоящей металлической антенны-башни или антенны-мачты, поддерживаемый оттяжками, разделёнными изоляторами на короткие секции с целью уменьшения токов, наводимых в них электромагнитным полем вибратора. КНД антенны-мачты и антенны-башни зависит от отношения их высоты к λ . Когда это отношение равно 0,63, КНД имеет максимальное значение, равное 6. Если по условиям работы в этом диапазоне волн желательно направленное излучение в горизонтальной плоскости, то применяют сложную А. (рис. 4, а), состоящую обычно из 2 вертикальных несимметричных вибраторов — одного, непосредственно питаемого от передатчика (активный вибратор), и другого, выполненного идентично первому и возбуждаемого вследствие пространственной электромагнитной связи с ним (пассивный рефлектор). При надлежащей настройке пассивного рефлектора в результате интерференции волн, излучаемых активным вибратором и пассивным рефлектором, получается диаграмма направленности, характерная форма которой в горизонтальной плоскости показана на рис. 4, б. Как видно, применение рефлектора приводит к существенному ослаблению интенсивности излучения в одном полупространстве. КНД такой А. примерно в 2 раза больше КНД одного вибратора.