Математика. Утрата определенности. - Морис Клайн
Шрифт:
Интервал:
Закладка:
Критику чистой математики — математики ради математики — можно найти в сочинении Фрэнсиса Бэкона «О достоинстве и приумножении наук» (1620). Бэкон возражал против чистой, мистической и самодовольной математики, «полностью абстрагированной от материи и от физических аксиом» ([23], т. 1, с. 237), сетуя на то, что «таково уж свойство человеческого ума: не имея достаточно сил для решения важных проблем, он тратит себя на всякие пустяки» ([23], т. 1, с. 238). Значение прикладной математики Бэкон понимал следующим образом:
В природе существует много такого, что не может быть ни достаточно глубоко понято, ни достаточно убедительно доказано, ни достаточно умело и надежно использовано на практике без помощи и вмешательства математики. Это можно сказать о перспективе, музыке, астрономии, космографии, архитектуре, сооружении машин и некоторых других областях знания… По мере того как физика день ото дня будет приумножать свои достижения и выводить новые аксиомы, она будет во многих вопросах нуждаться все в большей помощи математики, и это приведет к созданию еще большего числа областей смешанной математики.
([23], т. 1, с. 238.)Во времена Бэкона математикам не нужно было напоминать о необходимости заниматься решением физических проблем. В наши дни математика отделилась от естествознания. За последние сто лет произошел раскол между теми, кто сохранил верность древним возвышенным мотивам математической деятельности, до сих пор питавшим математику глубокими и плодотворными темами исследований, и теми, кто плывет по воле ветра, изучая все, что подсказывает ему необузданное воображение. Ныне математика и естественные науки идут разными путями. Новые математические понятия вводятся без всякой попытки найти им приложения. Более того, математики и представители естественных наук перестали понимать друг друга, и нас вряд ли может утешить то, что вследствие чрезмерной специализации даже сами математики уже не понимают друг друга.
Отход от «реальности», занятия математикой ради самой математики с самого начала вызывали бурные споры. В своем классическом труде «Аналитическая теория тепла» (1822) Фурье с энтузиазмом повествует о математическом подходе к решению физических проблем:
Глубокое изучение природы — наиболее плодотворный источник математических открытий. Такое изучение не только обладает преимуществами хорошо намеченной цели, но и исключает возможность неясной постановки задач и бесполезных выкладок. Оно является надежным средством построения самого анализа и позволяет открывать наиболее значительные идеи, которым суждено навсегда сохраниться в науке. Фундаментальны те идеи, которые отражают явления природы…
Главная отличительная особенность [математического подхода] — его ясность; в нем нет символов, которые выражали бы смутные идеи. Он сводит вместе самые различные явления и обнаруживает объединяющие их скрытые аналогии. Даже если материя ускользает от нас, подобно воздуху и свету, по причине своей крайней тонкости, даже если мы хотим понять, как выглядят небеса на протяжении последовательных периодов, разделяемых многими столетиями, даже если сила тяжести и тепло действуют внутри земного шара на глубинах, которые навсегда останутся недоступными, математический анализ позволяет постичь законы всех этих явлений, Он делает их как бы видимыми и измеримыми и, должно быть, является способностью человеческого разума, призванной возместить кратковременность жизни и несовершенство наших чувств. Но еще более замечательно, что при изучении всех явлений математический анализ следует одному и тому же методу: он переводит все эти явления на один и тот же язык, как бы подчеркивая единство и простоту структуры окружающего нас мира и делая еще более заметным незыблемый порядок, правящий в природе всей материей.{156}
Карлу Густаву Якобу Якоби принадлежат первоклассные результаты в области механики и астрономии. Тем не менее он счел необходимым выступить против высказанного Фурье мнения с критическими замечаниями, которые, однако, в лучшем случае можно назвать односторонними. В письме Адриену Мари Лежандру от 2 июля 1834 г. Якоби писал:
Фурье усматривает главное назначение математики в общественной пользе и объяснении явлений природы, но такому ученому, как он, следовало бы знать, что единственная цель науки состоит в прославлении человеческого разума, поэтому любая задача теории чисел заслуживает ничуть не меньшего внимания, чем любой вопрос о нашей планетной системе.
Разумеется, специалисты по математической физике не разделяли взглядов Якоби. Лорд Кельвин (Уильям Томсон, 1824-1907) и Питер Гутри Тэйт (1831-1901) провозгласили в 1867 г., что лучшая математика — та, которую подсказывают приложения. Именно приложения приводят к «наиболее удивительным теоремам чистой математики, редко выпадающим на долю тех математиков, которые ограничивают себя рамками чистого анализа и геометрии, вместо того чтобы обращаться к богатой и прекрасной области математической истины, лежащей в русле физических исследований».
Многие математики также с осуждением относились к тяге своих коллег к чистой математике. Так, в 1888 г. Кронекер писал Гельмгольцу, внесшему значительный вклад в развитие математики, физики и медицины: «Ваш богатый практический опыт работы с разумными и интересными проблемами укажет математикам новое направление и придаст им новый импульс… Односторонние и интроспективные математические умозаключения приводят к областям, от которых нельзя ожидать сколько-нибудь ценных плодов».
В 1895 г. Феликс Клейн, бывший в то время признанным главой математического мира, также счел необходимым выразить протест против тяги к абстрактной, чистой математике:
Трудно отделаться от ощущения, что быстрое развитие современной мысли таит для нашей науки опасность все более усиливающейся изоляции. Тесная взаимосвязь между математикой и теоретическим естествознанием, существовавшая к вящей выгоде для обеих сторон, с возникновением современного анализа грозит прерваться.
К этой же теме Клейн возвращается в «Математической теории волчка» (1897):
В математической науке назрела насущная необходимость восстановить тесную взаимосвязь между чистой наукой и теми разделами естественных наук, где математика находит наиболее важные приложения, ту взаимосвязь, которая столь плодотворно проявила себя в трудах Лагранжа и Гаусса.
Пуанкаре в «Науке и методе», несмотря на язвительные замечания по поводу некоторых чисто логических построений математиков конца XIX в. (гл. VIII), признает полезность математических исследований о постулатах, о воображаемых геометриях, о функциях со странным ходом. Чем более эти размышления уклоняются от наиболее общепринятых представлений, а следовательно, и от природы и прикладных вопросов, тем яснее они «показывают нам, на что способен человеческий ум, когда он постепенно освобождается от тирании внешнего мира, тем лучше мы познаем ум в его внутренней сущности». Но все же «главные силы нашей армии приходится направлять в сторону противоположную, в сторону изучения природы» ([1], с. 302). В «Ценности науки» Пуанкаре писал:
Нужно было бы окончательно забыть историю науки, чтобы не помнить, что стремление познать природу имело самое постоянное и самое счастливое влияние на развитие математики… Если бы чистый математик забыл о существовании внешнего мира, то он уподобился бы художнику, который умеет гармонически сочетать краски и формы, но у которого нет моделей. Его творческая сила скоро иссякла бы.
([1], с. 223.)Несколько позже, в 1908 г., ту же тему подхватил Феликс Клейн. Его беспокоило, как бы математики не стали злоупотреблять чрезмерной свободой в создании произвольных математических структур. Произвольные структуры, предостерегал Клейн, — «смерть всякой науки». Аксиомы геометрии «не произвольные, а вполне разумные утверждения, как правило опирающиеся на наше восприятие пространства. Точное содержание геометрических аксиом определяется их целесообразностью». Занимаясь обоснованием аксиом неевклидовой геометрии, Клейн подчеркивал, что аксиома Евклида о параллельных, как того требуют наглядные представления, выполняется лишь с точностью, не превышающей определенные пределы. По другому случаю Клейн заметил, что «тот, кто пользуется привилегией свободы, должен нести и бремя ответственности». Под ответственностью Клейн понимал служение интересам познания природы.
К концу жизни Клейн, возглавлявший математический факультет Гёттингенского университета и созданный при нем институт математики — в то время признанный центр математического мира, — счел необходимым еще раз выразить свой протест против чрезмерного увлечения чистой математикой. В книге «Лекции о развитии математики в XIX в.» (1925) он напомнил об интересе, который Фурье питал к решению практических задач самыми лучшими из существовавших в начале XIX в. математических методов, и противопоставил прикладную направленность интересов основателей математической физики чисто математической утонченности методов и абстрактности идей математики XX в. Далее в «Лекциях» говорится следующее: