Категории
Самые читаемые
onlinekniga.com » Детская литература » Детская образовательная литература » Загадки, фокусы и развлечения (сборник) - Яков Перельман

Загадки, фокусы и развлечения (сборник) - Яков Перельман

Читать онлайн Загадки, фокусы и развлечения (сборник) - Яков Перельман

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 7 8 9 10 11 12 13 14 15 ... 25
Перейти на страницу:

– Сколько же ты проделал всех перекладываний? – спросил брат, одобрив мою работу.

– Не считал.

– Давай сосчитаем. Ведь интересно же знать, каким наименьшим числом ходов можно достигнуть нашей цели. Если бы кучка состояла не из 5-ти, а только из 2-х монет – пятиалтынного и гривенника, то сколько понадобилось бы ходов?

– Три: гривенник на среднее блюдце, пятиалтынный – на третье и затем гривенник на третье блюдце.

– Правильно. Прибавим теперь еще монету – двугривенный – и сосчитаем, сколькими ходами можно перенести кучку из этих монет. Поступаем так: сначала последовательно переносим меньшие две монеты на среднее блюдце. Для этого нужно, как мы уже знаем, 3 хода. Затем перекладываем двугривенный на свободное третье блюдце – 1 ход. А тогда перекладываем обе монеты со среднего блюдца тоже на третье – еще 3 хода. Итого всех ходов 3 + 1 + 3 = 7.

– Для четырех монет позволь мне сосчитать самому число ходов. Сначала переношу 3 меньшие монеты на среднее блюдце – 7 ходов; потом полтинник на третье блюдце – 1 ход, и затем снова 3 меньшие монеты на третье блюдце – еще 7 ходов. Итого 7 + 1 + 7 = 15.

– Отлично. А для пяти монет?

– 15 + 1 + 15 = 31.

– Ну, вот ты и уловил способ вычисления. Но я покажу тебе, как можно его еще упростить. Заметь, что полученные нами числа 3, 7, 15, 31 – все представляют собою двойку, умноженную на себя один или несколько раз, но без единицы. Смотри!

И брат написал табличку:

– Понимаю: сколько монет перекладывается, столько раз берется двойка множителем, а затем отнимается единица. Я мог бы теперь вычислить число ходов для любой кучки монет. Например, для 7 монет:

– Вот ты и постиг эту старинную игру. Одно только практическое правило надо тебе еще знать: если в кучке нечетное число монет, то первую монету перекладывают на третье блюдце; если четное – то на среднее блюдце.

– Ты сказал: старинная игра. Разве ты не сам ее придумал?

– Нет, я только применил ее к монетам. Сама же игра очень древнего происхождения и зародилась, вероятно, в Индии. Там существует преинтересная легенда, связанная с этой игрой. В городе Бенаресе имеется будто бы храм, в котором индусский бог Брама при сотворении мира установил три алмазных палочки и надел на одну из них 64 золотых кружка: самый большой внизу, а каждый следующий меньше предыдущего. Жрецы храма обязаны без устали, днем и ночью, перекладывать эти кружки с одной палочки на другую, пользуясь третьей как вспомогательной и соблюдая правила нашей игры: переносить зараз только один кружок и не класть большего на меньший. Легенда говорит, что, когда будут перенесены все 64 кружка, наступит конец мира.

– О, значит, мир давно уж должен был погибнуть, если верить этому преданию!

– Ты думаешь, кажется, что перенесение 64 кружков не должно отнять много времени?

– Конечно. Делая каждую секунду один ход, можно ведь в час успеть проделать 3600 перенесений.

– Ну и что же?

– А в сутки – около ста тысяч. В десять дней – миллион ходов. Миллионом же ходов можно наверное перенести не 64 кружка, а хоть целую тысячу.

– Ошибаешься. Чтобы перенести 64 кружка, нужно круглым счетом 500 миллиардов лет!

– Но почему это? Ведь число ходов равно только произведению 64 двоек, а это составляет…

– «Только» 18 триллионов с лишком, если называть триллионом миллион миллионов миллионов.

– Погоди, я сейчас перемножу и проверю.

– Прекрасно. А пока будешь умножать, я успею сходить по своим делам.

Шесть монет в трех рядах.

Девять монет в десяти рядах.

Десять монет в пяти рядах.

И брат ушел, оставив меня погруженным в выкладки. Я нашел сначала произведение 16 двоек, затем умножил этот результат – 65536 – сам на себя, а то, что получилось, – снова на себя. Скучная работа, но я вооружился терпением и проделал ее до конца. У меня получилось такое число:

18 446 744 073 709 551 616.

Брат, значит, был прав…

Набравшись храбрости, я принялся за те задачи, которые брат предложил мне решить самостоятельно. Они оказались не такими уж сложными, а некоторые даже и очень легкими. С 11 монетами в 10 блюдцах дело было до смешного просто: мы клали в первое блюдце первую и одиннадцатую монеты; затем во второе блюдце третью монету, потом четвертую монету и т. д. А где же вторая монета? Ее совсем не клали! В этом и весь секрет.

Решения задач с размещениями монет ясны из прилагаемых чертежей (см. рис. на стр. 110–111).

Наконец, задача с монетами в квадратиках решается так, как показано здесь на чертеже: 18 монет размещены в квадрате с 36 клетками, и при этом в каждом ряду находится по три монеты.

В каждом ряду 3 монеты.

Завтрак с головоломками

Полтинник и гривенник. – Как мерить и взвешивать с помощью монет. – Великан и карлики. – Монета в 1000 рублей. – Два арбуза. – Геометрия торговцев. – Вес рыбы. – Задача о равноволосых людях. – Два гренадера. – Пароход и щепка. – Отгадывание задуманных чисел и спичек.

– Вчера задали мне любопытную задачу, – рассказывал однажды товарищ брата, когда все мы сидели за завтраком. – В бумажке вырезано круглое отверстие величиной с гривенник, и надо через него продеть полтинник. Уверяли меня, что это возможно.

– Сейчас посмотрим, возможно ли это, – ответил брат. – Он справился в своей записной книжке, сделал какие-то выкладки и объявил:

– Да, возможно.

– Но как же это? Я не понимаю, – недоумевал гость.

– А я понимаю, – вмешался я в разговор: – сначала продеть один гривенник, потом второй, третий, четвертый и пятый. Тогда пройдет полтинник.

– Не полтинник, а 50 копеек, – поправил брат. – Надо же продеть именно полтинник.

Он вынул из кармана обе монеты, приложил гривенник к бумажке, обвел его карандашом и вырезал кружок маленькими складными ножницами своего перочинного ножа.

– А теперь проденем через это отверстие полтинник.

С недоверчивым ожиданием следили мы за его пальцами. Он изогнул бумажку так, что круглое отверстие вытянулось в прямую узкую щель. Представьте наше изумление, когда через эту щель действительно проскользнул полтинник!

– Хоть и вижу своими глазами, но все еще не понимаю. Ведь отверстие меньше полтинника! – сказал гость.

– Сейчас все станет ясно. Ширина гривенника у меня записана: 17 1/3 миллиметра. Окружность отверстия будет в 3 1/7 раза больше, т. е. свыше 54 миллиметров. Теперь сообразите, какой длины должна получиться щель, когда я растягиваю кружок в прямую линию. Она будет вдвое меньше окружности отверстия, т. е. 27 миллиметров с небольшим. Поперечник же полтинника не достигает 27 миллиметров, и, следовательно, полтинник должен пройти через такую щель. Правда, надо еще принять в расчет и толщину монеты; но дело в том, что когда обводят гривенник карандашом, кружок неизбежно получается чуть больше его истинных размеров; поэтому маленький запас для толщины монеты всегда имеется.

– Теперь я понял, – сказал товарищ брата. – Это все равно, как если бы я обтянул полтинник по диаметру нитяной петлей и затем сложил бы эту петлю кружочком. Через такой кружочек полтинник, разумеется, не пройдет, между тем как через петлю он проходил.

– Ты, кажется, помнишь наизусть размеры всех монет, – обратилась к брату сестра.

– Не всех: только тех, величину которых легко запомнить. Остальные у меня записаны.

– Какие же легко запомнить? По-моему, все одинаково трудно.

– Не скажи. Разве трудно запомнить, что три полтинника, положенные в ряд, составляют 8 сантиметров.

– Я этого не подозревал, – признался гость. – Ведь зная это, можно производить измерения с помощью монет. Полезно для Робинзонов, у которых, по счастью, сохранился в кармане полтинник.

Петля вокруг монеты.

– Этим и воспользовались герои одного из романов Жюля Верна, потому что и для французских монет существует простое соотношение между их размерами и метром. И заметьте: монеты помогут Робинзонам производить также и взвешивания. Вес рублевой монеты – 20 граммов, полтинника – 10 граммов.

– Так рубль по объему ровно вдвое больше полтинника? – спросила сестра.

– Ровно вдвое.

– Однако рублевая монета не кажется такою: она не толще полтинника вдвое и не шире его вдвое, – возразила она.

– Ей и не полагается быть вдвое толще и шире. Если бы она такою была, она имела бы объем не вдвое больше, а…

– Вчетверо, понимаю.

– Ошибаешься: ввосьмеро! Ведь если монета вдвое шире, то она и вдвое длиннее; а так как она еще и вдвое толще, то объем ее больше в 2 x 2 x 2, т. е. в 8 раз.

– Чтобы иметь двойной объем – сказал гость, – рубль должен быть шире и толще полтинника в такое число раз, которое, будучи умножено на себя раз и еще раз, дало бы в результате 2.

– Верно, – подтвердил брат. – И число это примерно равно 1 1/4. Умножьте 1 1/4 x 1 1/4 x 1 1/4.

1 ... 7 8 9 10 11 12 13 14 15 ... 25
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Загадки, фокусы и развлечения (сборник) - Яков Перельман.
Комментарии