Категории
Самые читаемые
onlinekniga.com » Научные и научно-популярные книги » Физика » Новый ум короля: О компьютерах, мышлении и законах физики - Пенроуз Роджер

Новый ум короля: О компьютерах, мышлении и законах физики - Пенроуз Роджер

Читать онлайн Новый ум короля: О компьютерах, мышлении и законах физики - Пенроуз Роджер

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 107 108 109 110 111 112 113 114 115 ... 160
Перейти на страницу:

Все это, конечно, имеет совсем мало общего с тем, что происходит в действительности в нашей вселенной! Энтропия никогда не убывает подобным образом; она возрастает. Если бы в некоторый момент времени газ действительно был бы сконцентрирован в одном из углов ящика, то, скорее всего, ранее, газ надежно удерживался в этом углу перегородкой, которую затем внезапно убрали. А может быть, газ удерживался там самопроизвольно, будучи охлажденным до температуры его твердого или жидкого состояния, а затем был очень быстро разогрет и, в результате, перешел в газообразную фазу. В любом случае, энтропия этих предшествующих состояний была бы даже еще ниже, чем исходного. Второе начало, несомненно, оставалось бы справедливым и в этих случаях, и энтропия бы все время возрастала — т. е. при обратном течении времени она бы, как нетрудно понять, убывала. Теперь мы отчетливо видим, что наше предыдущее рассуждение приводит нас к совершенно неправильному заключению о том, что наиболее вероятной предысторией газа, сконцентрированного в некоторый момент времени в углу ящика, была его эволюция из начального состояния теплового равновесия с монотонным убыванием энтропии вплоть до того момента, когда весь газ собрался в углу; в то время как в нашем реальном мире этот способ оказывается чрезвычайно маловероятным. В действительности, газ должен был начинать свою эволюцию из состояния с гораздо меньшим значением энтропии и энтропия должна была монотонно возрастать, проходя через все свои промежуточные значения вплоть до момента времени, когда весь газ соберется в углу.

Таким образом, наши рассуждения, опирающиеся на свойства случайных блужданий точки в фазовом пространстве, оказываются вполне удовлетворительными, когда мы применяем их для предсказания будущей эволюции системы и совершенно неудовлетворительными для восстановления ее прошлой эволюции. Именно, мы получаем, что наиболее вероятным будущим газа, который начинает эволюционировать из угла ящика, будет его конечное состояние теплового равновесия, а не внезапное появление перегородки или внезапное замерзание или сжижение газа. Столь странные сценарии будущего как раз и могли бы послужить примерами процессов, протекающих с понижением энтропии, которые совершенно исключаются нашей трактовкой процессов в фазовом пространстве. Но в направлении прошлого, именно такие «странные» сценарии и могли бы иметь место и, более того, они совсем не выглядят странными. Наши рассуждения, связанные с представлением процессов в фазовом пространстве, дали нам совершенно неправильный ответ при попытке применить их к обратному направлению времени!

Очевидно, все это бросает тень сомнения на наши исходные рассуждения. Получается, что мы не обрели никакого ключа к пониманию второго начала. Единственный достоверный вывод, который мы можем сделать из наших рассуждений, заключается в следующем: если фиксировано какое-либо начальное низкоэнтропийное состояние (скажем, газ, собранный в углу ящика), то в отсутствии каких-либо факторов, ограничивающих систему, следует ожидать возрастания энтропии в обоих направлениях времени по отношению к энтропии данного состояния (рис. 7.6).

Рис. 7.6. Если мы интерпретируем ситуацию, изображенную на рис. 7.5 в обратном направлении времени, мы «восстановим» такое прошлое, в котором энтропия должна возрастать от ее настоящего значения. Это катастрофически противоречит наблюдениям

Это утверждение не сработало в нашем случае в направлении прошлого именно из-за того, что подобные ограничения имелись. Безусловно существовало нечто, ограничивающее систему в прошлом. Это было что-то такое, что просто вынудило энтропию быть низкой в прошлом. Таким образом, стремление энтропии к возрастанию в будущем совсем неудивительно. Высокоэнтропийные состояния, в некотором смысле — состояния «естественные», которые не требуют какого-либо объяснения причин своего существования. Настоящей загадкой являются низкоэнтропийные состояния в прошлом. А что ограничивало наш мир и сделало его энтропию в прошлом столь низкой? Именно повсеместное присутствие состояний с ничтожно малой энтропией и есть самый удивительный факт той действительной вселенной, в которой мы живем, хотя такие состояния настолько привычны для нас, что мы, как правило, перестаем им удивляться. Мы сами представляем собой системы с пренебрежительно малой энтропией. Все вышеизложенные соображения подводят нас к мысли о том, что мы можем легко объяснить стремление энтропии увеличиваться с течением времени для системы, начинающей эволюцию из некоторого заданного низкоэнтропийного состояния. Но что действительно достойно удивления, так это тот факт, что энтропия оказывается монотонно убывающей по мере того, как мы продолжаем ее измерять во все более и более отдаленном прошлом этой системы!

Источник низкой энтропии во Вселенной

Теперь мы попытаемся понять, откуда же все-таки берется такая «удивительно» низкая энтропия в том реальном мире, где мы живем. И начнем мы, в первую очередь, с самих себя. Если мы сумеем разобраться с вопросом о природе нашей собственной низкой энтропии, то, наверное, сумеем найти ее источник и для газа, удерживаемого перегородкой, и для стакана воды на столе, и для яйца над шкворчащей сковородой, и для кусочка сахара над чашкой кофе. В каждом из перечисленных случаев прямо или косвенно в дело были замешаны или одно лицо, или группа людей (и даже курица!). Создание подобных низкоэнтропийных состояний в значительной мере было связано с использованием некоторой небольшой части нашей собственной низкой энтропии. Но это, возможно, была не единственная причина. Не исключено, что для откачки газа за перегородку в углу ящика использовался специальный вакуумный насос.

Если насос был не ручной, то, наверное, для получения низкоэнтропийной энергии, необходимой для этого процесса, было использовано какое-нибудь «природное топливо» (например, нефть). Возможно также, что насос имел электрический привод и, в некоторой степени, использовал низкоэнтропийную энергию, заключенную в урановом топливе атомной энергетической станции. Я вернусь ко всем этим внешним низкоэнтропийным источникам позже, но сперва давайте разберемся с низкой энтропией в нас самих.

Откуда же и в самом деле берется наша собственная столь малая энтропия? Строительный материал для наших тел — это продукты, которые мы едим, и кислород, которым мы дышим. Существует довольно расхожее мнение, что продукты и кислород необходимы нам лишь для получения энергии, но, на самом деле, это верно лишь отчасти. Потребляемые нами продукты действительно окисляются кислородом, который мы вдыхаем, и это обеспечивает нас энергией. Но большая часть этой энергии снова покидает наши тела, главным образом, в виде тепла. Поскольку энергия сохраняется, и поскольку реальное энергетическое содержание наших тел остается более или менее неизменным на протяжении всей нашей взрослой жизни, то нет никакой необходимости и увеличивать его. Нам вполне достаточно той энергии, которая содержится в наших телах в настоящий момент. Иногда мы, действительно, увеличиваем собственное энергетическое содержание, когда наращиваем вес — но это, как правило, совсем нежелательно! Также, начиная с детского возраста, по мере взросления и роста нашего тела, мы значительно увеличиваем свое энергетическое содержание; но речь сейчас идет совсем не об этом. Вопрос заключается в том, как нам удается поддерживать свою жизнь на всем ее протяжении (в основном во взрослый период). Для этого нам совсем не требуется увеличивать свое энергетическое содержание.

Тем не менее, нам действительно необходимо пополнять энергию, которую мы постоянно теряем в виде тепла. Несомненно, что чем более мы «энергичны», тем большее количество энергии мы теряем таким образом. Вся эта энергия должна быть восстановлена. Тепло — это самая неупорядоченная, т. е. самая высокоэнтропийная форма энергии в ряду остальных. Мы потребляем энергию в низкоэнтропийной форме (продукты и кислород), а выделяем ее в форме высокоэнтропийной (тепло, углекислый газ, экскременты). Нам не нужно как-то вылавливать энергию из окружающей среды, так как энергия сохраняется. Но мы непрерывно боремся со вторым началом термодинамики. Энтропия не постоянна — она все время растет. Для поддержания нашей жизни нам необходимо сохранять тот низкий уровень энтропии, который имеется внутри нас. Это нам удается благодаря потреблению низкоэнтропийной комбинации продуктов и атмосферного кислорода, их взаимодействию в наших телах и выделению энергии, которую иначе мы бы усвоили, в высокоэнтропийной форме. Таким образом, мы можем предохранять энтропию наших тел от возрастания и можем поддерживать (и даже совершенствовать) свою внутреннюю организацию (см. Шредингер [1967]).

1 ... 107 108 109 110 111 112 113 114 115 ... 160
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Новый ум короля: О компьютерах, мышлении и законах физики - Пенроуз Роджер.
Комментарии