Категории
Самые читаемые
onlinekniga.com » Научные и научно-популярные книги » Науки о космосе » Черные дыры и складки времени. Дерзкое наследие Эйнштейна - Кип Торн

Черные дыры и складки времени. Дерзкое наследие Эйнштейна - Кип Торн

Читать онлайн Черные дыры и складки времени. Дерзкое наследие Эйнштейна - Кип Торн

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 107 108 109 110 111 112 113 114 115 ... 154
Перейти на страницу:

13.4. Возможная эволюция звезды, коллапсирующей с образованием черной дыры (далее в этой главе будет показано, что этот сценарий весьма маловероятен). Восемь диаграмм, от (а) до (з), представляют собой последовательные этапы эволюции звезды и соответствующую геометрию пространства. Звезда начинает коллапсировать в нашей Вселенной (а) и превращается в черную дыру, вокруг которой формируется горизонт событий (6). Затем глубоко внутри черной дыры от нашей Вселенной отпочковывается область пространства, содержащая звезду, и формирует маленькую закрытую вселенную, которая ни с чем больше не связана (в). Эта закрытая вселенная движется через гиперпространство (г, д), доходит до другой большой вселенной и прикрепляется к ней (е). После этого звезда взрывается, и этот взрыв происходит уже в другой вселенной (ж, з)

Чем может закончиться такой взрыв? Очевидно, звезда не может вновь появиться из-под горизонта событий. Законы гравитации Эйнштейна запрещают чему бы то ни было (за исключением виртуальных частиц) вылететь из-под горизонта. Однако оставалась еще одна возможность: звезда может взорваться в другой области нашей Вселенной или даже в другой вселенной.

На рис. 13.4 показан коллапс звезды и пришедший ему на смену взрыв. Каждая диаграмма на этом рисунке изображает искривленное пространство в нашей Вселенной, а также в другой вселенной, в виде двумерных поверхностей, находящихся в гиперпространстве более высокой размерности. [Отметим, что гиперпространство — это плод воображения физиков: мы, люди, обречены жить всегда в нашей собственной Вселенной (или в другой вселенной, если сможем туда выбраться); мы никогда не сможем выбраться в окружающее гиперпространство или получить оттуда какие-либо сигналы. Гиперпространство нужно нам только как вспомогательное средство для визуализации кривизны пространства вокруг звезды, коллапсирующей в черную дыру, и для визуализации процесса коллапса звезды в нашей Вселенной и последующего ее взрыва в другой вселенной.]

Две вселенные на рис. 13.4 подобны двум островам в океане, а гиперпространство — омывающий их океан. Острова не соединяются между собой сушей; точно так же вселенные не соединены друг с другом пространством.

На диаграммах рис. 13.4 изображена последовательная эволюция звезды. Звезда начинает коллапсировать в нашей Вселенной (а). Она превращается в черную дыру, вокруг черной дыры образуется горизонт событий, и коллапс продолжается (б). Вещество в звезде сжимается настолько, что пространство вокруг нее искривляется и замыкается, образуя маленькую закрытую вселенную, напоминающую воздушный шар (в, г); эта новая маленькая вселенная отпочковывается от нашей Вселенной и начинает передвигаться самостоятельно в гиперпространстве. (Нечто похожее может произойти и на острове в океане, если туземцы построят лодку и захотят отправиться в плавание по океану.) Отпочковавшаяся вселенная со звездой внутри движется от нашей большой Вселенной к другой большой вселенной (г, д) (как лодка плывет от одного острова к другому). Маленькая вселенная достигает другой большой вселенной (е) (как лодка, которая пристает к берегу другого острова), расширяется и извергает из себя звезду. Наконец, звезда взрывается в другой вселенной (ж, з).

Я понимаю, что все это звучит как чистая научная фантастика. В свое время черные дыры явились прямым следствием решения Шварцшильда, полученного для уравнения поля Эйнштейна (глава 3); точно так же предложенный сценарий эволюции — непосредственный вывод из другого решения уравнения Эйнштейна, решения, найденного Гансом Райсснером и Гуннаром Нордстремом в 1916–1918 гг., но не понятого ими до конца. В 1960 г. ученики Уилера, Дитер Брилл и Джон Грейвс, раскрыли физический смысл решения Райсснера — Нордстрема. Вскоре стало ясно, что это решение с небольшими изменениями можно применить для описания коллапсирующей и взрывающейся звезды (рис. 13.4). Такая звезда отличается от звезды Оппенгеймера-Снайдера только одним существенным моментом: она электрически заряжена, и при ее сжатии формируется сильное электрическое поле, которое некоторым образом причастно к взрыву, происходящему со звездой в другой вселенной.

* * *

Подведем итог. В 1964 г. конечные стадии эволюции звезды, которая в результате схлопывания превращается в черную дыру, выглядели следующим образом (во многом благодаря стараниям Уилера, который считал эти исследования основным делом своей жизни):

1. Известно решение уравнения Эйнштейна, предложенное Оппенгеймером и Снайдером для звезды идеальной формы (в том числе для идеальной сферы). Из этого решения следует, что в центре черной дыры возникает сингулярность с бесконечно большими приливными силами гравитации. Эта сингулярность захватывает, разрушает и проглатывает абсолютно все, что попадает в черную дыру.

2. Известно также другое решение уравнения Эйнштейна (частный случай решения Райсснера — Нордстрема) для звезды, имеющей не вполне идеальную форму или сферическую форму, но при этом еще электрический заряд. Глубоко внутри черной дыры такая звезда отпочковывается от нашей Вселенной, прикрепляется к другой вселенной (или к отдаленной области нашей собственной Вселенной) и там взрывается.

3. Было далеко не ясно, какое из этих двух решений (а возможно, ни то и ни другое) «устойчиво по отношению к малым, случайным возмущениям» и, следовательно, может иметь место в реальной Вселенной.

4. В то же время Халатников и Лифшиц утверждали, что сингулярности всегда неустойчивы по отношению к малым возмущениям и поэтому они никогда не возникают. Следовательно, сингулярность Оппенгеймера — Снайдера никогда не может возникнуть в нашей реальной Вселенной.

5. По поводу этого утверждения Халатникова и Лифшица среди физиков существовал некий скептицизм, по крайней мере, в Принстоне. Возможно, он был отчасти вызван желанием Уилера, чтобы эти сингулярности существовали в природе, ибо они могли стать вожделенным местом для слияния общей теории относительности и квантовой механики.

1964-й год стал переломным моментом. В этом году Роджер Пенроуз революционизировал математические инструменты, которыми мы с тех пор пользуемся для анализа свойств пространства-времени. Его революция была настолько важной и оказала настолько сильное влияние на поиск «священного Грааля» Уилера, что я отвлекусь от основного повествования и уделю несколько страниц в книге рассказу о Пенроузе и его революции.

Революция Пенроуза

Роджер Пенроуз вырос в семье медиков в Британии. Его мать была врачом, отец — знаменитым профессором генетики человека в Лондонском университетском колледже. Родители Роджера хотели, чтобы, по крайней мере, кто-нибудь один из четверых детей пошел по их следам и занялся медицинской карьерой. Старший брат Роджера, Оливер, совершенно не оправдал их надежд, с самого раннего возраста он намеревался заниматься физикой (и на самом деле стал одним из ведущих специалистов в мире по статистической физике, в области изучения статистических свойств большого числа взаимодействующих атомов). Младший брат Роджера, Джонатан, тоже не собирался становиться врачом; единственное, чем он хотел заниматься, — игрой в шахматы (позже он стал чемпионом Британии по шахматам и оставался им семь лет подряд). Младшая сестра, Ширли, была еще слишком молода, когда Роджер выбирал себе карьеру, и не показывала склонности ни к какому конкретному занятию. (Впоследствии именно она стала врачом и порадовала своих родителей.) Становится понятно, почему именно на Роджера родители возлагали основные надежды.

Когда Роджеру было шестнадцать лет, он вместе с другими учениками класса прошел собеседование у директора школы. Нужно было решать, какие предметы выбрать в качестве основных на последние два года, перед тем как поступать в колледж. «Я люблю математику, химию и биологию», — сказал он директору. «Невозможно. Нельзя соединить биологию с математикой. Либо то, либо другое», — заявил директор. Роджеру была более дорога математика. «Хорошо, я займусь математикой, химией и физикой», — сказал он. Когда Роджер пришел в тот вечер домой, его родители были в ярости. Они обвинили сына в том, что он связался с плохой компанией. Биология совершенно необходима для медицины; как он мог от нее отказаться?

Роджер Пенроуз (1964). [Фото сделано Годфри Арджентом для Британской Национальной портретной Галереи и Лондонского Королевского общества. Предоставлено Годфри Арджентом]

Через два года Роджер решил, чем он будет заниматься в колледже. Роджер вспоминает, как он сказал, что хочет поехать в Лондон, поступить в университетский колледж и получить степень по математике. «Мой отец был против. Математика, утверждал он, хороша для тех, кто больше ничего не умеет делать, но карьеры из нее не сделаешь». Роджер настаивал на своем, и отец добился, чтобы его протестировал один из преподавателей математики, работавший в колледже. Математик пригласил юношу на собеседование и предупредил его, что, скорее всего, он решит лишь одну или две из предложенных задач. Собеседование должно было продолжаться целый день. Когда же Роджер за несколько часов правильно решил все двенадцать задач, отец сдался. Так Роджер занялся математикой.

1 ... 107 108 109 110 111 112 113 114 115 ... 154
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Черные дыры и складки времени. Дерзкое наследие Эйнштейна - Кип Торн.
Комментарии