Вторая эра машин. Работа, прогресс и процветание в эпоху новейших технологий - Эндрю Макафи
Шрифт:
Интервал:
Закладка:
Вполне ясно, что многие существенно важные строительные блоки процесса вычислений: плотность микрочипов, скорость обработки, емкость запоминающего устройства, энергоэффективность, скорость загрузки и так далее – улучшались по экспоненте в течение долгого времени. Чтобы понять важность закона Мура для реального мира, давайте сравним возможности компьютеров, разделенных лишь несколькими периодами удвоений. Машина ASCI Red (1996), первый плод Ускоренной стратегической компьютерной инициативы (Accelerated Strategic Computing Initiative) правительства США, была на момент своего появления самым быстрым из когда-либо существовавших суперкомпьютеров. Для его создания потребовалось 55 миллионов долларов, а сотня его серверных шкафов занимала площадь почти в 150 квадратных метров в Национальной лаборатории Сандиа в штате Нью-Мексико.[73] Этот компьютер, предназначенный для расчета ресурсоемких задач типа имитации ядерных испытаний, был первым устройством, которое показало скорость выше одного терафлопа – то есть триллиона операций с плавающей запятой[74] в секунду – в ходе стандартных тестов. Чтобы достичь такой скорости, компьютеру требовалось более 800 киловатт в час, что сопоставимо с мощностью, потребляемой 800 домами. К 1997 году скорость ASCI Red достигла 1,8 терафлопа.
Через девять лет этой же скорости достиг другой компьютер. Однако он был сконструирован не для имитации ядерных испытаний, а для создания сложной реалистичной трехмерной графики в режиме реального времени. И сделан он был не для физиков, а для игроков в видеоигры. Этим компьютером был Sony PlayStation 3, который был вполне сопоставим с ASCI Red с точки зрения результативности, однако стоил около 500 долларов, занимал площадь менее одной десятой квадратного метра и потреблял 200 ватт.[75] Иными словами, за неполных 10 лет экспоненциальный цифровой прогресс дал нам возможность использовать мощные устройства, работавшие невероятно быстро, не только в единственной правительственной лаборатории, но и в гостиных и студенческих общежитиях по всему миру. Всего в мире было продано около 64 миллионов устройств PlayStation 3. А ASCI Red был демонтирован в 2006 году.
Экспоненциальный прогресс многое значил для достижений, которые мы обсуждали в предыдущей главе. Компьютер Watson производства IBM запускает массу умных алгоритмов, однако он не смог бы быть конкурентоспособным без компьютерного «железа», в сто раз более мощного, чем у его предшественника, шахматного компьютера Deep Blue, победившего в 1997 году чемпиона мира Гарри Каспарова. Приложения для распознавания речи типа Siri требуют немалых вычислительных мощностей, которые стали доступными лишь на мобильных телефонах типа iPhone 4S производства Apple (первый телефон с установленной в нем программой Siri). Фактически по своей мощности iPhone 4S был вполне сопоставим со знаменитым ноутбуком Powerbook G4, выпущенным той же компанией всего десятью годами ранее. Как показывают все эти инновации, экспоненциальный прогресс позволяет технологиям стремиться вперед и превращать научную фантастику в реальность на второй половине шахматной доски.
Дело не ограничивается компьютерами, или Насколько широки пределы закона Мура
Еще одно сравнение между поколениями компьютеров позволяет выявить не только силу закона Мура, но и его масштабность. Как и в случае с ASCI Red и PlayStation 3, суперкомпьютер Cray-2 (появившийся в 1985 году) и планшет iPad 2 (появившийся в 2011-м) имели почти одинаковые характеристики. Однако в iPad также имелись динамик, микрофон и гнездо для наушников. У него было две камеры; первая, на лицевой стороне устройства, имела уровень качества Video Graphics Array (VGA), а камера на задней стороне могла снимать видео в высоком разрешении. Обе камеры могли делать обычные фотографии, а задняя камера имела к тому же пятикратный цифровой зум. Планшет способен подключаться и к мобильным телефонным, и к Wi-Fi-сетям, у него есть приемник GPS-сигнала, цифровой компас, акселерометр, гироскоп и сенсор, оценивающий степень освещенности. Вместо клавиатуры у планшета – тачскрин с высоким разрешением, который может одновременно обрабатывать до 11 прикосновений.[76] И все эти опции содержит устройство, более тонкое и легкое, чем обычный глянцевый журнал, и стоящее при этом меньше тысячи долларов. По сравнению с этим гаджетом Cray-2, стоивший более 35 миллионов долларов (в ценах 2011 года), был совершенно глухим, немым и совсем немобильным.[77]
Впихнуть весь этот функционал в iPad 2 удалось благодаря значительным переменам, произошедшим в последние десятилетия: из аналогового мира в цифровой перекочевали такие сенсорные устройства, как микрофоны, камеры и акселерометры. По сути, они стали компьютерными чипами. И, соответственно, их развитие подчинилось закону Мура.
Цифровые устройства для записи звука использовались уже в 1960-е годы, а в 1975-м один инженер из компании Eastman Kodak сконструировал первую современную цифровую камеру.[78] Первые устройства такого рода были дорогими и неуклюжими, однако их качество быстро улучшалось, а цены падали. Первая цифровая однообъективная зеркальная фотокамера компании Kodak, DCS 100 на момент выхода на рынок в 1991 году стоила около 13 000 долларов; она обладала максимальным разрешением в 1,3 мегапикселя и хранила изображения на отдельном диске весом около 4,5 кг, который пользователю приходилось носить в сумке на плече. Однако количество пикселей в расчете на доллар стоимости цифровой камеры удваивалось почти каждый год (это явление известно под названием «закона Хэнди» – в честь работника австралийского офиса Kodak Барри Хэнди), а сами камеры и аксессуары становились со временем, в согласии с экспоненциальным законом, меньше, легче, дешевле и лучше.[79] Цифровые сенсоры улучшились настолько, что Apple через 20 лет после появления DCS 100 добавила в iPad 2 две крошечные камеры, способные снимать фото и видео. А когда компания на следующий же год представила новую модель iPad, разрешение задней камеры улучшилось более чем в 7 раз.
Глаза машины
Закон Мура работает для развития процессоров, памяти, сенсоров и многих других элементов компьютерного оборудования (заметным исключением являются батареи, рабочие показатели которых не улучшились по экспоненте, поскольку, в сущности, они представляют собой химические устройства, а не цифровые). Однако согласно этому закону вычислительные устройства становятся не только быстрее, дешевле, меньше по размеру и легче. Они также начинают делать прежде недоступные вещи.
Исследователи искусственного интеллекта уже давно увлекались (чтобы не сказать – были одержимы) проблемой одновременной локализации и картографирования (simul-taneous localization and mapping, SLAM). Это процесс создания ментальной карты незнакомого здания непосредственно в момент, когда вы перемещаетесь по нему – где находятся двери? а лестницы? обо что тут можно споткнуться? – и отслеживания, в каком месте здания вы находитесь (что позволяет найти путь к выходу). У подавляющего большинства людей процессы SLAM происходят при минимальном участии сознания. Однако научить этому машину было значительно сложнее.
Исследователи много думали о том, какими сенсорами снабдить робота (камерами? лазерами? сонарами?) и каким образом интерпретировать массу данных, которые он передает, однако прогресс в этой работе был достаточно медленным. В одном из обзоров работы в этом направлении, сделанном в 2008 году, утверждалось, что SLAM «представляет собой одну из фундаментальных проблем робототехники… [однако] нам представляется, что почти все нынешние подходы неспособны привести к созданию достаточно точных карт для обширных территорий, в основном из-за увеличения стоимости вычислений и роста уровня погрешности, что в случае расширения сценария делает работу невозможной».[80] Если говорить коротко, то основные проблемы, мешавшие развитию машинного SLAM, заключались в том, что было невозможно быстро собрать данные о достаточно большой территории и немедленно обработать их. Точнее, было невозможно – до тех пор, пока всего через два года после публикации этого обзора на рынке не появился новый гаджет для видеоигр стоимостью 150 долларов.
В ноябре 2010 года Microsoft впервые предложила в качестве дополнения к игровой платформе Xbox сенсорное устройство Kinect, которое могло отслеживать движения двух активных игроков, сканируя при этом движения примерно 20 суставов. Если один игрок становился перед другим, устройство самостоятельно оценивало скрытые от него движения второго игрока и сразу же находило все его суставы, как только он вновь оказывался на виду. Kinect мог также распознавать лица, голоса и жесты в самых разных условиях освещенности и при разном уровне шума. Достигалось это с помощью цифровых сенсоров, внешнего микрофона (способного находить источник звука лучше, чем встроенный микрофон), стандартной видеокамеры и системы глубинного восприятия, умевшей одновременно и излучать, и принимать сигнал в инфракрасном спектре. Несколько встроенных процессоров и огромное количество проприетарных программ позволяли конвертировать данные, поступавшие с этих сенсоров, в информацию, которую могли бы использовать разработчики игр.[81] На момент выхода продукта на рынок все эти возможности были упакованы в устройство высотой 10 см и шириной менее 30 см, которое продавалось в рознице за 149,99 доллара.