Как понять сложные законы физики. 100 простых и увлекательных опытов для детей и их родителей - Александр Дмитриев
Шрифт:
Интервал:
Закладка:
28
Кильватерный след
Для опыта нам потребуются: банка, спичка или зубочистка, подсолнечное масло, зеленка.
Кильватерный след – это след, который оставляет за собой корабль. Если смотреть на морской залив с горы, то за каждым кораблем будет виден длинный след. Можем ли мы, используя свойство эмульсий не растворяться друг в друге, построить маленькую модель океана и кильватерного следа?
Запросто. Возьми любую банку, вымой ее тщательно и налей почти до краев обычной холодной воды.
Теперь окуни спичку или палец в подсолнечное масло и капни аккуратно с небольшой высоты маслом в банку. Капля масла (более жирного и легкого, чем вода) не растворится в воде, а растечется кружком. Поставь банку перед окном или лампой, чтобы видеть отражение лампы или окна в поверхности, – так лучше наблюдать за каплей.
Возьми острую палочку (зубочистку, заостренную спичку) и аккуратно потыкай в масляную каплю. Ты увидишь, что на ней образуются маленькие круглые дырочки. Еще дырочки возникают сами собой от пузырьков, поднимающихся из глубины банки.
Если теперь провести вдоль капли кончиком спички или палочки (будто корабль прошел по морю), то ты увидишь, что за спичкой остается след с завихрениями. Этот след очень точно похож на след от настоящего океанского корабля. Проведи так много раз – каждый раз будешь видеть след за «кораблем».
Теперь можно попробовать увидеть следы не только на поверхности, но и в глубине. Возьми обыкновенную зеленку и капни сверху в банку, прямо в масляную каплю. Во-первых, ты увидишь, как зеленка сразу «вскипит». Это спирт из зеленки растворяется в воде – и довольно красиво. Зеленка «повиснет» у поверхности банки, а мы точно так же проведем спичкой вдоль поверхности, глядя на нее сверху. Ты заметишь, что в глубине за спичкой тоже бегут вихри, маленькие зеленые смерчи.
Оказывается, во всех жидкостях и газах, в воздухе и воде, за быстро летящими или плывущими предметами (самолетами, лодками) образуются такие вихри.
Понаблюдай за машиной, проезжающей по пыльной дороге, – ты увидишь, что наш опыт довольно точно создает такие же вихри.
Только одна просьба – подкрашенную зеленкой воду выливай аккуратно, потому что зеленка может закрасить тебе всю раковину!
29
Хрупкость и ковкость
Для опыта нам потребуются: кусочек медной проволоки, обычный гвоздь, кусочек стальной проволоки или толстая иголка, кусочек алюминиевой проволоки, молоток.
Перейдем к металлам. Металлы окружают нас сегодня со всех сторон. Алюминий, железо, олово, свинец, серебро, золото, чугун… Знакомые названия. А вот еще несколько веков назад металлы были очень редки, и даже обычное железо было очень дорогим. Профессия же кузнеца казалась чуть ли не колдовством.
Мы заинтересуемся одним общим свойством металлов: ковкостью. Оказывается, металл от металла отличается по тому, насколько легко его ковать, изменять его форму ударами молотка или специального пресса.
Для этого опыта будут нужны кусочки металлов или проволока. Попроси у папы кусочки медной, стальной, алюминиевой проволоки. Железную проволоку нам может заменить обычный гвоздь – гвозди делаются из мягкого железа. Стальную проволоку (если не найдешь) заменит толстая иголка. Ну уж медную-то проволоку всегда можно вытащить из обрезка провода. Только запомни раз и навсегда: никогда не бери в руки провода на улице – неважно, торчат они из земли или просто валяются. Другой конец провода может быть присоединен к электричеству, и ты можешь серьезно пострадать от удара током!
Возьми молоток, положи куски проволоки на толстый кусок металла (можно найти при желании) и бей примерно с одинаковой силой по ним по очереди. Ты заметишь, что медная проволока расплющивается легче всего, гвоздь тоже довольно легко теряет форму. А вот иголку расплющить не так-то просто.
Значит, металлы отличаются друг от друга. И для человека это различие важно. Потому что мягкие металлы (золото, серебро, медь, свинец) легко обрабатывать. Зато твердые металлы (сталь, вольфрам, молибден) дольше служат.
30
Измеритель твердости на пальце
Для опыта нам потребуются: кусочек обычного бутылочного стекла, алюминиевая вилка, стальная вилка, зеркальце, шило или толстая иголка.
Мы уже познакомились с твердостью металлов. Все материалы на свете обладают той или иной твердостью. Но, например, у нас есть предмет из незнакомого материала. Как определить его твердость? Если по всем предметам колотить молотком, то, пожалуй, немного у нас этих предметов останется!
Мы попробуем другой опыт, который поможет нам сравнивать твердость материалов без всяких лабораторных приборов.
Найди на улице кусочек обычного бутылочного стекла. Аккуратно, чтобы не порезаться, заверни его в листок бумаги и принеси домой. Возьми старую алюминиевую вилку и шило или железную иголку, небольшое старое зеркальце, стальную вилку.
Теперь давай ставить опыт. Возьми кусочек стекла и попробуй провести небольшую царапину на алюминиевой вилке, на ногте своего большого пальца руки, на зеркальце. Попробуй теперь алюминиевой вилкой поцарапать на куске бутылочного стекла, зеркальце, ногте. Теперь шилом – то же самое.
Ты заметишь, что некоторые материалы оставляют царапины на других, а некоторые нет, зато сами царапаются. Мягче всего, конечно, ноготь. А тверже всего – шило. Стекло царапает на ногте, но не может процарапать металл стальной вилки. Стальная вилка явно тверже алюминиевой, потому что шило оставляет в алюминии достаточно глубокую царапину, а по стальной вилке только скользит.
Настоящие ученые именно так и определяют твердость материала в своих лабораториях. Они или вдавливают в поверхность материала специальный шарик и измеряют глубину ямки от шарика, или царапают поверхность.
Теперь ты можешь отличить поддельный драгоценный камень от настоящего. Если настоящим камнем (алмазом, например) провести по стеклу, то он оставит царапину. А вот поддельная стекляшка, конечно же, как она ни сверкай, царапины не оставит.
Так можно использовать знания физики, чтобы тебя не обманули!
31
Еще о силах поверхностного натяжения, или Как носить воду в решете
Для опыта нам потребуются:
чайное ситечко, подсолнечное масло.
Помните, я рассказывал, как муравей не может преодолеть силы натяжения жидкости и «вязнет» в обычной капле. А насколько велики эти силы на самом деле? Давайте проделаем следующий опыт. Нам понадобится подсолнечное масло и ситечко для процеживания чая. Оно обычно сделано в форме полукруглой сеточки с частыми ячейками. Через эти ячейки вода протекает свободно, а чаинки застревают и их можно выбросить.
Сухое ситечко надо густо намазать подсолнечным маслом. Потом взять чайную ложечку и аккуратно, не касаясь пальцами сеточки, начать подливать воду в ситечко. Вы увидите, что вода не вытекает! Несмотря на то что в ситечке есть дырочки, вода не может проскочить через дырочки.
Силы поверхностного натяжения держат воду в виде капелек между жирными металлическими проволочками
32
Почему полз ледник
Для опыта нам потребуется: зонтик.
Для этого опыта нам понадобится зонтик и несколько капель воды. А также несколько минут, чтобы разобраться с одной очень интересной теорией. В России почти два столетия назад жил человек по фамилии Кропоткин. Он получил очень хорошее техническое и военное образование и остался в истории как человек, разработавший идеи анархизма.
Но П.А. Кропоткин был еще и серьезным ученым. Он пытался ответить на довольно сложные вопросы строения и происхождения нашей Земли, как образуются горы и возникают моря… Одним из очень важных вопросов был вопрос о происхождении так называемых моренных гряд. Что это такое?
На необъятных просторах нашей Родины в полях можно обнаружить огромные камни, валуны, которые лежат как бы грядами. Словно какой-то гигант сложил ряды из этих многотонных валунов. Происхождение таких гряд на плоской равнинной территории представляло загадку для ученых. Что это? Остатки гор или холмов? Нет, ведь вокруг – твердое плато, огромная «каменная спина», и гор на ней быть не могло.
Кропоткин предложил довольно интересную теорию. На Крайнем Севере существует толстая шапка льда, намерзшей воды, – ледники. Эти ледники не стоят на месте, они ползут. Правда, очень медленно, по нескольку сантиметров в сутки, но за сотни тысяч лет могут покрыть большие расстояния, в тысячи километров. Если ледник в сутки проползает десять сантиметров, то за десять тысяч лет он проползет уже около сорока тысяч километров, то есть обернется вокруг Земли! На самом деле лед, конечно, тает по дороге, но все-таки может покрывать расстояния в тысячи километров за достаточно длительное время.