Категории
Самые читаемые
onlinekniga.com » Научные и научно-популярные книги » Научпоп » Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - Алекс Беллос

Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - Алекс Беллос

Читать онлайн Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - Алекс Беллос

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 8 9 10 11 12 13 14 15 16 ... 84
Перейти на страницу:

Подобная практика сошла на нет без малого два столетия назад. В 1834 году Казначейство решило сжечь старые, уже никому не нужные деревянные бирки в печи под Вестминстерским дворцом — тем самым, где размещается британский парламент. Однако огонь вышел из-под контроля. Чарльз Диккенс писал: «От печи, в которую загрузили слишком много этих нелепых палок, огонь перекинулся на деревянную обшивку; от обшивки — на здание палаты общин; в результате оба правительственных здания сгорели дотла». Различные финансовые махинации нередко оказывают влияние на работу правительств, но только деревянные бирки разрушили парламент до основания. Когда дворец отстроили заново, там воздвигли новую башню с часами — Биг-Бен, — быстро ставшую главной достопримечательностью Лондона.

* * *

Самое известное из альтернативных оснований — это 2, а соответствующая система счисления называется двоичной; числа в ней обычно выражаются с помощью цифр 0 и 1. Числа в двоичной системе записываются так, как если бы в системе с основанием 10 можно было использовать только цифры 0 и 1. Это последовательность, которая начинается как 0, 1, 10, 11, 100, 101, 110, 111, 1000. Таким образом, 10 — это два, 100 — четыре, 1000 — восемь и так далее, где каждый следующий нуль справа выражает собой результат умножения на два. (И в системе с основанием 10 то же самое — добавление нуля в число справа дает результат умножения этого числа на 10.)

В число своих поклонников двоичная система может с гордостью записать величайшего математика из всех, когда-либо увлекавшихся нестандартными основаниями. Это — Готфрид Лейбниц, один из величайших мыслителей конца XVII столетия — ученый, философ и государственный деятель. Среди множества его занятий было и исполнение обязанностей библиотекаря при дворе герцога Брауншвейгского в Ганновере. Лейбниц настолько вдохновился системой счета с основанием 2, что однажды даже написал письмо герцогу, побуждая его отлить серебряный медальон со словами imago creationis — «в образе мира» — как дань уважения двоичной системе. Для Лейбница двоичная система имела и практическую, и духовную значимость. Во-первых, он полагал, что ее возможности в описании любого числа в терминах удвоений упрощают все виды операций. «Она позволяет лаборанту взвешивать все виды масс, используя лишь несколько весов, а при отливке монеты может обеспечить большую ценность при меньшем числе», — писал он в 1703 году. Лейбниц признавал, что у двоичной системы имеются некоторые недостатки, так, числа при записи получаются намного длиннее (например, десятичная 1000 в двоичной системе записывается как 1 111 101 000), однако он добавлял: «Зато она играет более фундаментальную роль для наук и приносит новые открытия». Изучение симметрий и закономерностей в двоичных обозначениях, утверждал он, позволяет глубоко проникнуть в суть математики, а теория чисел благодаря этому становится богаче и разностороннее.

Но особенно восхищало Лейбница поразительное согласие между двоичной системой и его религиозными воззрениями. Он верил, что в основании всех явлений лежит «бытие» (или субстанции) и «небытие» (или «ничто»). Эта двойственность идеально выражалась числами 1 и 0. Подобно тому как Бог создал все бытие из пустоты, все числа можно записать в терминах единиц и нулей. К немалой радости Лейбница, его убежденность в том, что в двоичной системе выражена фундаментальная метафизическая истина, получила подтверждение, когда позднее он познакомился с древним китайским мистическим текстом «И Цзин» — «Книгой Перемен». С помощью этой книги можно заглянуть в будущее. В ней содержится 64 различных символа, каждый из которых сопровождается набором афоризмов. Гадающий случайным образом выбирает какой-то символ (традиционно — бросая веточки тысячелистника) и интерпретирует соответствующие комментарии — получается нечто вроде того, что можно прочитать в астрологическом прогнозе. Каждый символ в «Книге Перемен» представляет собой гексаграмму, то есть составлен из шести горизонтальных линий. Эти линии могут быть целыми (им соответствует ян) или иметь разрывы (им соответствует инь). Все 64 гексаграммы в «Книге Перемен» представляют собой полный набор комбинаций, составленных из инь и ян, сгруппированных по шесть.

Особенно изящный способ упорядочить все гексаграммы показан на рисунке. Если каждый янь записывается как 0, а каждый инь — как 1, то выписанная последовательность в точности соответствует двоичным числам от 0 до 63.

Это упорядочение известно также как последовательность Фу Си[8]. (Строго говоря, это упорядочение, обратное последовательности Фу Си, но математически они эквивалентны.) Лейбниц обнаружил двоичную природу последовательности Фу Си и, в соответствии с этим, «высоко оценил глубину „Книги Перемен“». Поскольку он считал, что двоичная система отражает Божественный промысел, сделанное им открытие, что она лежит также в основе даоистской мудрости, означало, что восточный мистицизм не противоречит западным религиозным воззрениям. «Субстанция древней теологии китайцев сохранена без потерь и, будучи избавлена от дополнительных ошибок, может быть поставлена на службу великим истинам христианской религии», — писал он.

Как тут было не восхититься двоичной системой! Однако в те времена восторженное ее принятие выглядело в научных кругах довольно эксцентрично. И тут Лейбниц, полагая, что эта система имеет значение фундаментальной важности, проявил поразительный дар предвидения. Он и сам не мог тогда вообразить, насколько прав в своих утверждениях относительно основания 2. Цифровой век целиком основан на двоичной системе, поскольку компьютерные технологии на самом базисном уровне оперируют на языке, составленном из нулей и единиц. «Увы! — писал математик Тобиас Данциг. — То, что некогда превозносилось как памятник монотеизму, в конце концов превратилось в потроха робота».

* * *

«Свобода — это свобода сказать, что два плюс два равно четырем», — утверждал Уинстон Смит, главный герой романа Джорджа Оруэлла «1984». Оруэлл имел в виду не только свободу слова в Советском Союзе, но и математику. Два плюс два — всегда четыре. Никто не может утверждать, что это не так. Математические истины не подвержены влиянию культуры и идеологии.

С другой стороны, наш подход к математике в весьма значительной степени подвержен влиянию культуры. Выбор основания десять, например, был сделан не по математическим причинам, а по физиологическим, отражающим число пальцев на руках и ногах. Языки также порой выражают математическое знание довольно занятным образом.

Почти во всех западноевропейских языках слова, выражающие числа, не подчиняются какому-то одному, постоянному правилу. Так, в английском языке существуют «двадцать один» (twenty one), «двадцать два» (twenty-two), «двадцать три» (twenty three), но при этом англоязычные люди не говорят «десять один», «десять два», «десять три» — вместо этого есть «одиннадцать», «двенадцать», «тринадцать». «Одиннадцать» («eleven») и «двенадцать» («twelve») — единственные в своем роде, и, хотя «тринадцать» (thirteen) представляет собой комбинацию трех и десяти, та часть, которая относится к тройке, идет перед десяткой — в противоположность слову «двадцать три», в котором часть, относящаяся к тройке, идет после части, выражающей двадцать. Между десятью и двадцатью в английском языке полный разброд.

В отличие от этого в китайском, японском и корейском языках слова, выражающие числа, следуют четкому закону. Одиннадцать записывается как «десять один», двенадцать — как «десять два» и так далее: «десять три», «десять четыре» — до «десять девять», что есть 19. Двадцать — это «два десять», а двадцать один — «два десять один». Во всех случаях числа произносятся точно так же, как они пишутся. Ну и что? А то, например, что это как-никак важно для детей. Эксперименты постоянно показывают, что азиатским ребятишкам легче научиться считать, чем европейским. В одном исследовании, которое проводилось с китайскими и американскими детьми четырех-пяти лет, и те и другие испытуемые показывали одинаковые результаты при обучении счету в пределах 12, но при обучении большим числам китайцы опередили американцев почти на год. Четкая, регулярная система упрощает также понимание арифметики. Выполняя простое сложение, типа 25 плюс 32, мы оказываемся на шаг ближе к ответу (который равен «пять десять семь»), если мы выражаем наш пример как «два десять пять» плюс «три десять два».

В немецком языке беспорядка еще больше, чем в английском. По-немецки 21 есть «einundzwanzig», или «один-и-двадцать», 22 — «zweiundzwanzig», или «два-и-двадцать»; и таким образом дело продолжается аж до 99 — количество единиц предшествует количеству десяток. Отсюда следует, что, когда немец произносит число, превышающее 100, цифры произносятся вовсе не по порядку: 345 — это «dreihundertfünfundvierzig», или «три-сто-пять-и-сорок», где все цифры порядком перемешаны по сравнению с записью 3-5-4. В Германии проявляют немалое беспокойство по поводу того, что из-за этого обращение с числами выглядит более запутанным, чем оно есть на самом деле — беспокойство настолько серьезное, что было основано общественное движение «Zwanzigeins» («Двадцать одно»), цель которого состоит в продвижении более регулярной системы.

1 ... 8 9 10 11 12 13 14 15 16 ... 84
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - Алекс Беллос.
Комментарии