Дискретная математика. Краткий курс. Учебное пособие - Александр Казанский
Шрифт:
Интервал:
Закладка:
Множество В задано списком букв, однако буква d повторяется дважды. С точки зрения определения это множество эквивалентно следующему: { a, d, c, f }, а такие разные списки могут приводить к недоразумениям. Поскольку во втором списке буква d выброшена из множества, то получается, что d ∉ B, в то же время очевидно, что d ∈ B. Чтобы избежать подобных недоразумений, более рационально задавать множества перечислением элементов без повторения одинаковых.
Множество С не содержит ни одного элемента, т. е. является пустым (C = Ø). В данном случае x должно быть равным нулю или – 8 и тогда
= 2, или
= 2, но ни 0, ни – 8 не является натуральными числами. Возникает вопрос – почему же тогда задаются пустые множества, если они не существуют? Причина в том, что это не всегда заранее известно. Например, если множество задано формулой и производится преобразование этой формулы, то может оказаться, что какая-то часть этой формулы не имеет элементов. Но наличие пустых множеств и наличие правил действий с ними позволяет выполнять преобразования и таких формул. С другой стороны, в настоящее время имеется множество улиц Москвы, на которых в течение дня бывают пробки. Однако никто не может дать гарантии, что не наступит время, когда это множество станет пустым.
Множество D также правильно определено, но его элементами являются множества, т. е. это множество множеств.
1.2. Найти список элементов для каждого из множеств:
(а) А = {x: x ∈ N, x – нечетно и x < 10},
(b) B = {x: x ∈ N,
∈N и x < 50},
(c) C = {x: x ∈ N и
< 3x}.
(a) А состоит из нечетных натуральных чисел, меньших 10, поэтому
A = {1, 3, 5, 7, 9};
(b) B состоит из натуральных чисел, меньших 50, для которых квадратный корень из выражения 4х + 1 является натуральным числом, поэтому
В = {2, 6, 12, 20, 30, 42};
(с) C состоит из натуральных чисел, для которых квадратный корень меньше кубического корня из утроенного х. Это выполняется для первых 8 натуральных чисел, поэтому
С = {1, 2, 3, 4, 5, 6, 7, 8 }.
1.3. Имеются следующие множества:
А = {1, 2}, B = { 1, 3, 5 }, C = {1, 2, 7, 9 }, D = {{1}, {2}}.
Определить, корректно ли поставлены символы ∈ и ⊆
(a) A ∉ C, потому что элементами множества C не являются множества.
(b) Ø ⊆ A, потому что Ø является подмножеством каждого множества.
(c) В ⊄ С, потому что элемент 4 ∈ В, но 4 ∉ С.
(d) A ⊆ С, потому что все элементы А также принадлежат и С.
(e) А ∉ D, потому что D не имеет элемента {1, 2}.
(f) 1 ∉ D, потому что элементом множества D является не число 1, а множество {1}.
(g) A ⊆ {1, 2,{1, 4}}, поскольку все элементы А являются элементами {1, 2,{1, 4}}
(h) {3} ∉ B, потому что 3 является элементом В, а {3} – нет.
1.4. Показать, что A = {2, 3, 4, 5} не является подмножеством В = {x: x ∈ N и х – простое число}.
Для доказательства необходимо показать, что в А есть по крайней мере один элемент, которого нет в В. Рассмотрим элемент 4 ∈ А, и поскольку 4 разлагается на произведение 4 = 2 * 2, то оно не является простым и поэтому не принадлежит множеству В.
1.5. Показать, что множество А = {a, d, c, d} является собственным подмножеством B = {a, b, c, d, f, g}.
Поскольку каждый элемент А принадлежит В, то А ⊆ В. Но в В есть элемент f ∉ A, поэтому А ≠ В и, следовательно, А является собственным подмножеством В, т. е. А ⊂ В.
1.6. Для множества А = {4, 6, 8, 10} найти его несобственное подмножество.
Несобственное подмножество А должно состоять из тех же самых элементов, что и само множество А, т. е. это множество {4, 6, 8, 10}.
Операции над множествами
1.7. Найти все пересечения и объединения следующих множеств:
A = (1, 2, 3, 4, 6}, B = {3, 4, 5, 7 }, C = {6, 7, 8}.
Пересечение множеств А и В состоит только из тех элементов, которые входят и в А и в В, а объединение – из тех элементов, которые входят в А, входят в В, а также тех, которые являются общими для них, т. е. входят в их пересечение:
А ∩ В = {3, 4} А ∩ C = {6} B ∩ C = {7} А ∩ В ∩ C = Ø,
A ∪ B = {1, 2, 3, 4, 5, 6, 7} A ∪ C = {1, 2, 3, 4, 6, 8} B ∪ C ={3, 4, 7, 8},
A ∪ B ∪ C = {1, 2, 3, 4, 5, 6, 7, 8}.
1.8. Даны пересечения и объединения множеств А, В и С.
А ∩ В = {4} А ∩ C = {5} B ∩ C = {7}
A ∪ B = {1, 2, 3, 4, 5, 6, 7} A ∪ C = {1, 2, 3, 4, 5, 7, 8, 9} B ∪ C = {4, 5, 6, 7, 8, 9}.
Найти множества A, B, C.
Нетрудно видеть, что А ∩ В ∩ C = Ø, потому что нет ни одного элемента, общего для всех трех пересечений А ∩ В, А ∩ C и B ∩ C. Найдем элементы множества А. Ясно, что А содержит элементы 4 и 5, поскольку они входят в пересечение А с В и А с C. Рассмотрим пересечение множеств A ∪ B и A ∪ C, оно состоит из элементов {1, 2, 3, 4, 5, 7} и включает в себя все элементы множества А и все элементы пересечения B ∩ C = {7}. Убрав элемент 7, мы и получим множество А = {1, 2, 3, 4, 5}.
Такое же рассуждение позволяет найти и множество В. Сначала найдем пересечение двух объединений A ∪ B и B ∪ C. Это будет множество {4, 5, 6, 7}. Затем удалим из него пересечение А ∩ C = {5}, которое не входит в В, и получим множество B ={4, 5, 6}.
Чтобы найти элементы С, найдем пересечение A ∪ C и B ∪ C, которое состоит из элементов {4, 5, 7, 8, 9}, и удалим из него пересечение А ∩ В = { 4}. Элемент 4 не может входить в С, поскольку он входит и в А, и в В. Если бы он входил и в С, то тогда пересечение А ∩ В ∩ C состояло бы из элемента 4, но оно пусто. Поэтому C = {5, 7, 8, 9}.
Найти множества А, В, С можно и при помощи других рассуждений. Например, найдем множество А. Для этого удалим из множества A ∪ B все элементы множества B ∪ C и получим множество {1, 2, 3}. Оно состоит из элементов множества А и не содержит тех элементов А, которые входят в пересечение А с В и А с С. Добавив эти элементы, мы и получим множество А = {1, 2, 3, 4, 5}.
1.9. Дано универсальное множество U = {1, 2, 3, 4, 5, 6, 7, 8, 9} и множества
A = { 1, 2, 3, 4} B = {3, 4, 5, 6, 7} C = {4, 6, 7, 8, 9}.
Найти:
(a) АС, ВС, СС;
(b) AB, BA, AC, BC;
(c) A
B, A
C, B
C;
(d) A ∪ (B ∩ C);
(e) (A ∩ B)C;
(f) (A ∪ B) ∩ (B ∩ C)C;
(g) AС ∩ BC ∩ C.
Вспомним, что:
дополнение АС состоит из тех элементов универсального множества, которые не входят в А;
разность множеств АВ состоит из тех элементов А, которые не принадлежат В;
симметрическая разность A
B состоит из тех элементов А или В, которые не входят в пересечение А и В.
(a) АС = {5, 6, 7, 8, 9}; BC = {1, 2, 8, 9}; CC = {1, 2, 3, 5};
(b) AB = {1, 2}; BA = {5, 6, 7}; AC = {1, 2, 3}; BC = {3, 5};