Виролюция. Важнейшая книга об эволюции после «Эгоистичного гена» Ричарда Докинза - Фрэнк Райан
Шрифт:
Интервал:
Закладка:
Но вопреки сопротивлению, местами продолжавшемуся полвека, двойная природа лишайников была принята, лишайники стали изучаться именно как результат симбиоза двух организмов, а некоторые биологи (а в особенности ботаники) осознали: лишайники могут быть не единственным примером тесной связи и партнерства между весьма разными живыми существами. Это осознание повлекло за собой внимательное рассмотрение паразитизма как феномена.
На примере лишайников стало ясно, что традиционное понимание паразитизма недостаточно для объяснения всех особенностей сложных взаимоотношений, взаимозависимости водоросли и гриба, образующих лишайник. Были обнаружены и другие примеры совместного, взаимозависимого существования у самых разных организмов в различных сообществах, от дубовых лесов до коралловых рифов. Немецкий ботаник Альберт Бернард Франк установил: почти каждое растение живет в тесном сообществе с грибом, зачастую физически сросшимся с ним, проникшим в него, так что знакомое всем сплетение корней выдернутого из земли садового растения — большей частью именно гриб. Надпочвенная часть растения обеспечивает гриб углеродными соединениями и энергией, а гриб поставляет корню воду и минералы. В семнадцати тысячах существующих разновидностей орхидей связь между растением и грибом настолько тесная, что гриб, как оказалось, снабжает созревающие семена не только водой и минералами, но и углеродными соединениями. Новая растущая область биологии, изучающая совместное существование живых существ, требовала строгого определения и наименования — и они были даны другим немецким ботаником, Антоном де Бари. Он предложил термин «симбиоз» и определил его как «совместное существование живых организмов»[15]. Это определение позволило объединить многие уже известные формы взаимозависимого сосуществования, включая паразитизм, когда один партнер пользуется другим, ничего не отдавая взамен, но вредя, комменсализм, когда один партнер также пользуется другим, не вредя ему при том, и мутуализм — выгоду от сосуществования получают оба партнера. Партнеры в сосуществовании получили название «симбионты», а партнерство в его целокупности — «голобионт».
В последующие годы было обнаружено ошеломляющее количество случаев симбиоза буквально во всех природных экосистемах. В особенности изобилуют случаи симбиоза во флоре и фауне океанов, включая кораллы, создающие коралловые рифы, и тропические дождевые леса с их поразительным видовым разнообразием. С самого начала предполагалось, что подобный симбиоз влечет за собой возможность эволюционных изменений взаимодействующих партнеров, и в 1910 году русский биолог Константин Мережковский[16] предложил термин «симбиогенез» для определения процесса, в котором симбиоз выступает в качестве эволюционного фактора.
В настоящее время считается: симбиогенез действует на нескольких уровнях. Большинство людей знакомо с «очистительной», или «санитарной», формой симбиоза, когда свирепые хищники вроде акул и морских окуней терпеливо ждут в очереди близ определенных мест у морского дна и позволяют мелким рыбкам и ракообразным очищать свою кожу и даже полость рта от мусора и паразитов. По очевидным причинам эта форма симбиоза названа «поведенческим» симбиозом. Метаболический симбиоз имеет место, когда симбионты обмениваются полезными веществами, как, например, растения с грибами. Любопытный симбиоз такого рода происходит у гигантских трубчатых морских червей, населяющих глубокие подводные расселины. Там, у глубоких разломов земной коры, где выходят на поверхность тектонические плиты, близ подводных вулканов, не имеющие рта трубчатые черви получают питательные вещества от бактерий, обитающих в их тканях, — а эти бактерии получают энергию от сульфида водорода, выделяемого подводными гидротермальными источниками (так называемыми «черными курильщиками»). Во многих случаях наличествуют одновременно и метаболический, и поведенческий симбиозы, например при опылении растений посредством насекомых либо птиц колибри, когда растение обеспечивает насекомое либо птицу нектаром, а подвижный партнер симбиоза транспортирует пыльцу к другим растениям, тем самым компенсируя их неспособность передвигаться.
Симбиоз работает и на третьем, более глубоком уровне — уровне так называемого «генетического» симбиоза. Эта книга и началась с его загадочного, захватывающего воображение примера — существования при непосредственном участии вируса изумрудно-зеленого слизня Elysia chlorotica.
История симбиологии насчитывает уже более века, и кажется весьма странным, что занимающиеся ею не рассматривали вирусы в качестве потенциальных симбионтов. В книге Саппа немного ссылок на работы по вирусам. Правда, в первое десятилетие после Второй мировой войны американский генетик Эдгар Альтенберг разработал симбиотическую теорию «вироидов», основанную на предполагаемом сходстве вирусов с невидимыми «обнаженными генами», или «плазмагенами», спрятанными в живых клетках. Альтенберг допускал, что вироиды могли играть роль в клеточной эволюции и что вызывающие рак вирусы могли в каждом пораженном пациенте возникать из вироидов, и ранее находившихся в клетках. Прозрения Альтенберга во многом оказались верными — но, к сожалению, он ошибался насчет природы вирусов. Вирусы — ни в коей мере не «обнаженные гены», и концепция «вироидов» так и не была принята биологией.
Завзятый борец с устоявшимися мнениями Рене Дюбо тоже пытался убедить коллег-вирусологов, что при определенных экологических условиях вирусы могут усилить выживательный потенциал носителя. Но в шестидесятых у провидца Дюбо не было технологий, позволяющих исследовать геном на молекулярном уровне, и его идеи не получили доказательств и не были приняты коллегами.
Приняв совет Ледерберга близко к сердцу, в последующие годы я уделил много внимания изучению симбиоза и его роли как эволюционной силы. Среди наиболее полезного из всего прочитанного мною были книги и статьи выдающегося биолога Линн Маргулис, профессора Массачусетского университета. Именно Линн Маргулис сыграла центральную роль в разработке современного понимания симбиоза. Я собрал целую библиотеку книг и статей по симбиологии, выпущенных за век с лишним существования этой дисциплины. И я понял: многие симбиологи заблуждались насчет самых основных черт природы вирусов, что существенно затруднило понимание их возможной роли как партнера в симбиозе.
Симбиоз, кстати, предполагает наличие двух взаимодействующих форм жизни либо организмов. Следовательно, чтобы рассуждать о возможном симбиозе с вирусами, стоит весьма внимательно рассмотреть возможность применения к вирусам терминов «форма жизни» либо «организм». И кажется, я нашел способ корректно применить эти понятия к вирусам. Даже самые закоренелые скептики согласятся: во время взаимодействия с носителем вирусы, несомненно, предстают «живыми». Биологам следует понять и принять: вирусы нужно рассматривать в рамках их жизненных циклов в естественной для них обстановке. Именно такой подход позволит рассматривать вирусы с эволюционной точки зрения как живые организмы.
Уяснение этого факта существенно облегчило мне выработку такого определения понятия симбиоза в применении к вирусам, которое было бы приемлемым как для вирусологов, так и для симбиологов. Изучая литературу по предмету, продолжая интервьюировать ведущих специалистов по двум этим дисциплинам, я постепенно оказался готовым экстраполировать хорошо проверенный концептуальный механизм симбиогенеза к вирусам, и, в частности, судить о вкладе вирусов в симбиогенез на генетическом уровне. Также мне пришло в голову рассмотреть симбиоз с точки зрения эволюции.
Дарвиновская теория предполагает линейный и вертикальный характер эволюции, новые виды, по ней, возникают от видов-предков подобно тому, как от основного ствола дерева отходят ветви. Симбиоз же предполагает «сеточность» эволюционной картины, горизонтальные связи между единовременно существующими различными формами жизни (принадлежащим не только к разным видам, но и, возможно, разным царствам живого). На первый взгляд может показаться: между симбиогенезом и современным дарвинизмом — ничего общего. Но это лишь на первый взгляд. Вопреки отчетливым различиям между механизмами, лежащими в основе этих двух эволюционных парадигм, симбиогенез не противоречит современному дарвинизму, и, в частности, дарвиновской концепции естественного отбора. Вопрос не в том, работает ли естественный отбор в случае симбиоза — поскольку, несомненно, он работает. Вопрос в том, каким именно образом он это делает в условиях, когда биологически взаимодействуют разные формы жизни.
Проще говоря, так ли естественный отбор работает в симбиогенезе, как он работает при мутационных изменениях генома? Для ответа рассмотрим два хорошо известных примера симбиоза.