Категории
Самые читаемые
onlinekniga.com » Документальные книги » Биографии и Мемуары » Эйнштейн. Его жизнь и его Вселенная - Уолтер Айзексон

Эйнштейн. Его жизнь и его Вселенная - Уолтер Айзексон

Читать онлайн Эйнштейн. Его жизнь и его Вселенная - Уолтер Айзексон

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 118 119 120 121 122 123 124 125 126 ... 238
Перейти на страницу:

И Эйнштейн не остался в стороне. В июне того же года он получил написанную по-английски статью молодого физика из Индии Шатьендраната Бозе. Он вывел формулу Планка для излучения абсолютно черного тела, рассмотрев излучение как облако газа, для исследования которого использовал метод статистического анализа. Однако Бозе пришлось пойти на некое ухищрение: он утверждал, что два фотона, находящиеся в одном и том же энергетическом состоянии, абсолютно неразличимы как в теории, так и фактически, и в статистических расчетах их нельзя рассматривать независимо.

Творческое использование статистического анализа напоминало Эйнштейну его юношеское пристрастие к такому подходу. Он не только способствовал публикации статьи, он развил ее положения в трех собственных работах. В них он использовал метод расчета Бозе, названный позже статистикой Бозе – Эйнштейна, и рассмотрел газ реальных молекул, став основоположником раздела физики, называемого квантовой статистикой.

В статье Бозе рассматривались фотоны, то есть частицы, у которых нет массы. Эйнштейн распространил его идею на квантовые частицы, обладающие массой, и показал, что в определенных случаях при статистическом рассмотрении их тоже надо считать неразличимыми.

“К квантам и молекулам нельзя относиться как к не зависящим друг от друга структурам”, – написал он48.

Ключевым моментом, почерпнутым Эйнштейном в исходной статье Бозе, был метод, который позволял вычислить вероятность реализации каждого из возможных состояний большого числа квантовых частиц. Чтобы понять его, воспользуемся аналогией, предложенной физиком из Йельского университета Дугласом Стоуном. Посмотрим, как можно выполнить такой расчет, играя в кости. Вычислим шансы получить нужное нам число очков, например семь, подбрасывая два кубика (A и B). Одна из интересующих нас возможностей – на кубике А выпадает число 4, и число 3 выпадает на кубике В. Другая возможность – число 3 выпадает на кубике А, а число 4 – на кубике В. Создается впечатление, что это два разных случая, при которых может выпасть семь очков. Эйнштейн понял: новый способ подсчета шансов реализации квантовых состояний строится на том, что это не две разные возможности, а только одна. Это значит, что комбинация 4–3 неотличима от комбинации 3–4, точно так же как комбинация 5–2 – от комбинации 2–5.

Это в два раза уменьшает число возможных вариантов, при которых, подбрасывая два кубика, можно получить число очков, равное семи. Но число комбинаций, при которых выпадают числа 2 и 12, не меняется. (Какой бы метод подсчета ни использовался, есть только по одной возможности выбросить кости так, чтобы набрать такое количество очков.) А число возможных способов получить при подбрасывании двух костей шесть уменьшается с пяти до трех. Потратив несколько минут, чтобы прикинуть, как можно выбросить то или иное число очков, понимаем, как новый способ расчета меняет шансы получить желаемый результат. Ответ меняется еще ощутимее, если подбрасывать сразу десятки кубиков. А если речь идет о миллиардах частиц, различие вероятностей становится гигантским.

Применив такой подход к газу квантовых частиц, Эйнштейн обнаружил удивительную вещь: в отличие от газа классических частиц, остающегося газом, если частицы не притягиваются друг к другу, газ квантовых частиц может конденсироваться в некое подобие жидкости даже при отсутствии притяжения между ними.

Открытию этого необычайно важного для квантовой механики явления, называемого теперь конденсацией Бозе – Эйнштейна [76], мы обязаны главным образом Эйнштейну. Бозе не вполне осознал, насколько новаторским и фундаментальным является использованный им статистический метод. Как и в случае с постоянной Планка, Эйнштейн увидел физическую реальность и осознал значимость хитроумного нововведения, предложенного другим49.

Согласно методу Эйнштейна частицы следует рассматривать так, как если бы они обладали чертами волн, как предлагали и он, и де Бройль. Эйнштейн даже предсказал, что, если повторить старый опыт Томаса Юнга с двумя прорезями (этот опыт доказывает волновую природу света, поскольку при освещении экрана с двумя щелями лучом света за ним наблюдается интерференционная картина), но использовать теперь пучок молекул газа, получится такая же картина интерференции, как если бы эти частицы были волнами. “Проходящий через апертуру пучок молекул газа, – писал он – должен привести к дифракции, как если бы это был световой луч”50.

Поразительно, но эксперименты вскоре показали, что именно так и происходит. Хотя Эйнштейн и был не в восторге от того, по какому пути движется квантовая механика, он по-прежнему, по крайней мере в то время, содействовал ее развитию. “Таким образом, Эйнштейн, безусловно, участвовал в построении волновой механики, – сказал позднее его друг Макс Борн, – и никакое алиби опровергнуть это не может”51.

Эйнштейн признавался, что находит такое “взаимное влияние” частиц “абсолютно загадочным”, поскольку, казалось бы, они должны вести себя независимо. “Кванты и молекулы не должны рассматриваться независимо друг от друга”, – написал он испытывавшему те же затруднения физику. В постскриптуме он добавил, что с математикой все ясно, но “физическая природа этого остается покрытой тайной”52.

На первый взгляд, предположение о том, что две частицы должны считаться неразличимыми, нарушило принцип, который Эйнштейн по-прежнему будет старался сохранить. Это принцип сепарабельности, согласно которому две частицы, находящиеся в разных точках пространства, представляют собой две отдельные независимые реальности. Одним из достоинств общей релятивистской теории гравитации была возможность избавиться от “призрачного действия на расстоянии”, как Эйнштейн образно назвал его позднее. Это означает, что происходящее с одним телом не может мгновенно повлиять на другое, расположенное вдалеке тело.

Опять Эйнштейн оказался на переднем крае, обнаружив квантово-механический эффект, который в дальнейшем будет причинять неудобства ему самому. И опять молодые коллеги с большей, чем он, готовностью подхватили его идеи, точно так же как раньше ему оказалось легче, чем Планку, Пуанкаре и Лоренцу, воспользоваться полученными ими результатами53.

Еще один шаг неожиданно был сделан, казалось бы, совершенно непригодным для этой цели игроком – австрийским физиком-теоретиком Эрвином Шредингером. Потеряв надежду создать нечто действительно важное, он принял решение стать философом. Однако, по-видимому, число австрийских философов было уже достаточно велико, и работу в этой области ему найти не удалось. Поэтому Шредингер продолжил занятия физикой и, воодушевленный одобрительными отзывами Эйнштейна о де Бройле, предложил теорию, названную “волновой механикой”. Эта теория приводит к системе уравнений, описывающих волновое поведение электронов де Бройля. Шредингер говорил о “волнах Эйнштейна – де Бройля”, разделив славу, как ему казалось правильным, пополам54.

1 ... 118 119 120 121 122 123 124 125 126 ... 238
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Эйнштейн. Его жизнь и его Вселенная - Уолтер Айзексон.
Комментарии