Категории
Самые читаемые
onlinekniga.com » Научные и научно-популярные книги » Физика » Новый ум короля: О компьютерах, мышлении и законах физики - Пенроуз Роджер

Новый ум короля: О компьютерах, мышлении и законах физики - Пенроуз Роджер

Читать онлайн Новый ум короля: О компьютерах, мышлении и законах физики - Пенроуз Роджер

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 120 121 122 123 124 125 126 127 128 ... 160
Перейти на страницу:

Рис. 8.2. Более экстравагантное изображение эволюции вектора состояния, описанное вспять по времени. Расчетная вероятность, связывающая наблюдение в точке О с наблюдением в точке О', такая же, как и в случае, изображенном на рис. 8.1, но к чему относится это вычисленное значение?

Мы предполагаем, что вектор состояния равен |X) непосредственно перед О, а не сразу после этого наблюдения, и применим процедуру унитарной эволюции вспять по времени вплоть до момента предыдущего наблюдения О'. Предположим, что в результате обратной эволюции мы получим состояние, описываемое вектором |X') (сразу же после наблюдения О'). В нормальном описании эволюции вперед во времени, изображенном на рис. 8.1, сразу же вслед за О' мы имели другое состояние |ψ') (результат наблюдения О', при котором эволюция вперед во времени вектора |ψ') переводит его в |ψ) в момент наблюдения О). Теперь в нашем обращенном во времени описании у вектора |ψ') тоже есть своя роль: он представляет состояние системы непосредственно перед О'. Вектор состояния |ψ') соответствует состоянию, фактически наблюдавшемуся в точке О', так что с «обращенной» точки зрения мы рассматриваем |ψ') как результат наблюдения О' в обращенном вспять времени. Расчетное значение квантовомеханической вероятности р', связывающее результаты наблюдений в точках О и О', теперь определяется уменьшением величины |X'|2 при проекции |X') в направлении |ψ') (что равно уменьшению |ψ'|2 при проекции |ψ') в направлении |ψ')). То, что мы получим то же самое значение, что и раньше, является фундаментальным свойством оператора U[193].

Таким образом, может создаться видимость установления симметричности во времени квантовой теории даже в случае, когда помимо обычной процедуры унитарной эволюции U учитывается также и разрывный процесс, описываемый процедурой редукции R вектора состояния. Это, однако, неверно. Квантовая вероятность р описывает — независимо от того, как она рассчитывается — вероятность получить результат (а именно, |X)) в точке О при условии определенного результата (а именно, |ψ')) в точке О'. Эта вероятность не обязательно равна вероятности получить данный результат в точке О' при условии данного результата в точке О, а ведь именно последнюю вероятность[194] и должна определить обращенная во времени квантовая механика. Просто удивительно, до чего много физиков молчаливо полагают эти две вероятности равными друг другу. (Я сам этим грешил — см. Пенроуз [1979б], с. 584.) Однако наиболее вероятно, что эти две вероятности совершенно различны и только первая из них правильно определяется в рамках квантовой механики!

Давайте поясним эту ситуацию на простом конкретном примере. Предположим, что у нас есть лампа L и фотоэлемент (то есть, детектор фотонов) Р. Между L и P разместим полупосеребренное зеркало М, наклонив его под углом равным, скажем, 45° к линии, соединяющей точки L и Р (рис. 8.3).

Рис. 8.3. Необратимость во времени R-процедуры в простом квантовом эксперименте. Вероятность регистрации фотона фотоэлементом при условии излучения фотона источником равна в точности одной второй, но вероятность излучения фотона источником при условии, что фотоэлемент зарегистрировал фотон, заведомо не равна одной второй

Предположим, что лампа время от времени случайным образом испускает фотоны, и что конструкция ее такова (в ней используются параболические зеркала), что фотоны всегда оказываются очень точно нацеленными на Р. При каждом попадании фотона на фотоэлемент последний регистрирует это событие, причем мы предполагаем, что устройство срабатывает со 100 %-ной надежностью. Предположим также, что каждый факт излучения фотона регистрируется в точке L и тоже со 100 %-ной надежностью. (Ни одно из этих идеализированных требований не противоречит принципам квантовой механики, хотя практическое достижение такой эффективности может представлять определенные трудности.)

Свойства полупосеребренного зеркала М таковы, что оно отражает в точности половину попадающих на него фотонов и пропускает остальную половину. Правильнее рассматривать это с точки зрения квантовой механики. Волновая функция фотона падает на зеркало и расщепляется на две волновых функции. Амплитуда отраженной части волны равна 1/√2, а амплитуда прошедшей части волны тоже равна 1/√2. Обе части волновой функции должны считаться «сосуществующими» (при нормальном описании вперед по времени) до того момента, когда предполагается имевшим место «наблюдение». В этой точке ситуация с одновременно сосуществующими альтернативами разрешается (в пользу одной или другой) фактически реализованной альтернативы с вероятностями, равными квадратам (модулей) соответствующих амплитуд, а именно (1/√2)2 = 1/2 в обоих случаях. После выполнения наблюдения вероятности отражения или прохождения фотона действительно оказываются равными одной второй.

Посмотрим теперь, как все это соотносится с нашим экспериментом. Предположим, что зарегистрирован факт излучения фотона лампой L. Волновая функция фотона расщепляется на зеркале и приходит в точку Р с амплитудой, равной 1/√2, поэтому фотоэлемент либо регистрирует фотон, либо не регистрирует его — и то и другое с вероятностью, равной одной второй. Другая часть волновой функции фотона попадает в точку А на лабораторной стене (см. рис. 8.3) и тоже с амплитудой 1/√2. Если фотоэлемент Р не регистрирует событие, то фотон следует считать попавшим в лабораторную стену в точке А. Если бы в точке А находился другой фотоэлемент, то он регистрировал бы фотон всякий раз, когда фотоэлемент Р не регистрирует фотон, и не регистрировал бы фотон всякий раз, когда фотоэлемент регистрирует фотон. В этом смысле нет никакой необходимости устанавливать фотоэлемент в точке А. Мы можем определить, что сделал бы фотоэлемент в точке А, будь он там установлен, просто глядя на фотоэлементы в точках L и Р.

Теперь должно стать ясно, как выполняются расчеты в квантовой механике. Зададимся вопросом:

«Если известно, что лампа L сработала, то какова вероятность того, что сработал фотоэлемент Р

Для ответа на этот вопрос учтем, что имеется амплитуда, равная 1/√2 для фотона, прошедшего путь LMP, и амплитуда, равная 1/√2, для фотона, прошедшего путь LMA. Возведя эти амплитуды в квадрат, получаем соответствующие вероятности, равные 1/2 и 1/2, попадания фотона в точки Р и А соответственно. Следовательно, на наш вопрос квантовая механика дает ответ, равный

1 ... 120 121 122 123 124 125 126 127 128 ... 160
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Новый ум короля: О компьютерах, мышлении и законах физики - Пенроуз Роджер.
Комментарии