Категории
Самые читаемые
onlinekniga.com » Научные и научно-популярные книги » История » Психология критического мышления - Дайана Халперн

Психология критического мышления - Дайана Халперн

Читать онлайн Психология критического мышления - Дайана Халперн

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 121 122 123 124 125 126 127 128 129 ... 150
Перейти на страницу:

Если задача, над которой вы работаете, слишком сложна и каждый возможный путь решения разветвляется на дополнительные пути, то следует обратиться к помощи иерархического дерева, или древовидной диаграммы.

Вот, например, классическая задача, впервые предложенная Дункером (Dun-cker, 1945). Хотя предлагаемая в ней проблема является медицинской, никаких специальных знаний для ее решения не потребуется.

У пациента неоперабельная опухоль в желудке Задача состоит в том, чтобы придумать способ избавления от этой опухоли с помощью рентгеновских лучей, при котором не будут повреждены здоровые ткани, окружающие опухоль со всех сторон

Остановитесь на несколько минут и подумайте, какой путь вы выбрали бы для решения этой задачи.

Большинство людей, занятых решением задачи Дункера (Duncker, 1945), продвигались к цели в несколько этапов. Хотя были опробованы различные решения, лучшим из них оказалось применение нескольких слабых лучей, каждый из которых проникал в тело снаружи со своей, отличной от других позиции – при этом все лучи фокусировались и собирались воедино в месте расположения опухоли. Таким образом, лучи слабой интенсивности не наносят вреда здоровым тканям, а опухоль при этом подвергается интенсивному лучевому воздействию. Такой подход пришел в голову после перебора различных способов решений, которые подразумевали резкий рост интенсивности лучей в районе расположения опухоли.

Одна из предпринятых попыток поиска путей решения задачи с помощью иерархического дерева проиллюстрирована на рис. 9.8. Заметьте, что цель обязательно располагается в вершине дерева. Общие стратегии перечисляются одним уровнем ниже цели, наиболее характерные пути, определяющие каждую стратегию, – еще одним уровнем ниже.

В частности, древовидные диаграммы оказываются весьма полезными, если исходная информация сама по себе имеет иерархическую структуру. Например, классификация всех живых организмов выстроена биологами в иерархическую схему. Если вы спросите ребенка, является ли пчела животным, он, вероятно ответит: «Нет, поскольку это насекомое». Этот вопрос можно ему разъяснить, если нарисовать биологическое классификационное дерево, пример которого приведен на рис. 9.9.

Другой пример использования древовидных диаграмм для решения задач – это применение хорошо известного генеалогического дерева. Занимающиеся вопросами недвижимости юристы, которые часто сталкиваются с запутанным клубком родственных связей, должны уметь определять степень родства всех членов семьи, чтобы контролировать выполнение условий завещаний и уплату налогов на имущество.

Рис. 9.8. Диаграмма в виде иерархического дерева, иллюстрирующая одну из попыток решения сформулированной Дункером задачи рентгеновского облучения (Duncker, 1945).

Рис. 9.9. Диаграмма в виде иерархического дерева, которая поможет ответить на вопрос: «Являются ли пчелы животными?»

Многочисленные отчимы и мачехи, сожители, пасынки, падчерицы, сводные братья и сестры, незаконнорожденные дети могут превратить сложный вопрос наследства в сущий правовой кошмар. Аккуратное построение генеалогического дерева, которое разместит каждого родственника на соответствующей ветке, является просто бесценным средством решения запутанных задач наследования.

Постройте матрицу

Матрица - это расположение фактов или чисел в прямоугольном порядке. На самом деле это просто более замысловатое слово для таблицы. Когда исходные данные в задаче могут быть разбиты на отдельные категории, матрица может оказаться удобным способом для их представления. Рассмотрим задачу, сформулированную Уимби и Лоххедом (Whimbey Lochhead, 1982):

Трое молодых людей – Фред, Эд и Тед – женились на Джоан, Салли и Викки (не обязательно в таком порядке). Джоан, будучи сестрой Эда, живет в Детройте. Фред не любит животных. Эд весит больше, чем муж Викки. А у мужа Салли есть хобби: разводить сиамских котов. Фред тратит на регулярные поездки от своего дома в Энн-Эрбор до работы в Детройте свыше 200 часов в год. Определите, кто на ком женат (р. 67).

Каков тип исходных данных в этой задаче? Данные касаются мужей и жен. Постройте матрицу 3 х 3 и заполните ее, насколько возможно, в соответствии с полученной информацией:

Поскольку Джоан является сестрой Эда, она не может быть его женой, поэтому впишите «НЕТ» в ячейку матрицы Джоан-Эд. Пропустите на время следующие два предложения и остановитесь на фразе, что Эд весит больше мужа Викки. Это значит, что Эд не является мужем Викки. Эд должен быть женат на Салли. Матрица принимает вид:

Перечитайте задачу и попробуйте найти еще ключи к решению. Нашли что-нибудь важное? Фред живет в Энн-Эрбор, а Джоан живет в Детройте; следовательно, можно предположить, что они не являются мужем и женой. Поскольку Фред не женат на Джоан и Салли, он должен быть мужем Викки. Кто же остается для Теда? Женой Теда должна быть Джоан.

Заполненная матрица выглядит так:

Возьмем еще один пример. Эта задача взята из прекрасной книги Филлипса (Phillips, 1961) под названием «Мои любимые загадки и головоломки». Наверное, она вам покажется проще, так как вы уже познакомились с техникой решения:

«Все мои четыре внучки – высокообразованные девушки», – заявил Кен Чезабл с явным удовольствием. «Каждая из них, – продолжил он, – играет на каком-нибудь музыкальном инструменте и говорит на одном из европейских языков, причем так же хорошо, если не лучше, как человек, для которого этот язык родной».

«На чем играет Мэри?» – спросил кто-то.

«На виолончели».

«А кто играет на скрипке?»

«Понимаете, – сказал Чезабл, – я постоянно забываю. О Господи, увы! Но я знаю, что это как раз та, которая говорит по-французски».

Кроме этого, мне удалось выудить из Кена только отрицания. Я узнал, что девушку, которая играет на органе, зовут не Валерия; ту, которая говорит по-немецки, зовут не Лорна; и что Мэри не знает итальянского. Антея не играет на скрипке и не говорит по-испански. Валерия не знает французского; Лорна не играет на арфе, а та, что играет на органе, не говорит по-итальянски.

На чем играет и какой язык знает Валерия?

Теперь остановитесь и поразмышляйте над этой задачей. Не продолжайте, пока действительно не продумаете ее.

Вам следует начать с осознания того, что исходная информация делится на категории, вследствие чего самым удобным представлением условий задачи будет матрица. Имеются четыре внучки, четыре музыкальных инструмента и четыре языка. Можно построить такую матрицу:

Поскольку большая часть информации дана в форме отрицания, давайте перечислим возможные комбинации внучек-инструментов-языков.

Так как девушка, которая играет на скрипке, говорит по-французски, она должна быть Лорной. Антея играет на органе и говорит по-немецки. Это означает, что только Мэри может говорить по-испански. А для Валерии остается единственная комбинация – арфа и итальянский.

Естественно, это искусственные задачи, непохожие на те, с которыми нам приходится сталкиваться в жизни. Давайте рассмотрим более практическое применение матричной формы представления задачи.

Существуют значительные разногласия во мнениях относительно применения витамина С как средства, сдерживающего распространение простуды Как бы вы решили этот вопрос: предотвращает или нет витамин С простуду? Вероятнее всего, вы бы дали витамин С некоторым людям и не дали бы другим, а затем подсчитали бы количество заболевших простудным заболеванием в каждой группе. Предположим, вы получили следующие результаты. 10 человек принимали витамин С и не заболели, 4 человека принимали витамин С и все-таки простудились, 8 человек, не принимавших витамин С, не заболели, а 6 человек, которые не принимали его, заболели. Какой вывод вы сделаете?

Поскольку исходная информация может быть разбита на категории (принимали или не принимали витамин С, простудились или нет), матрица, содержащая соответствующие значения, поможет нам правильно представить данные:

Изучая каждую ячейку матрицы, вы можете установить, предотвращает ли витамин С простуду. Чтобы оценить действие витамина, вам нужно посмотреть, сколько человек из числа простудившихся принимали его. Их число составляет 4 из 10, или 40%. А теперь оцените количество людей, не заболевших и принимавших витамин С. Как можно заметить, их 8 из 18; т.е. 55,5%. Из этого факта можно сделать вывод, что витамин С помогает предотвратить простуду. (Принципы исследований более подробно рассматриваются в главах 6 и 7.) Целью этого примера было показать, что матричное представление условий задачи облегчает поиски ответа. По существу, это та же задача, что была рассмотрена в главе 8, когда врачи и медсестры должны были решить, существует ли связь между заболеванием и целым комплексом симптомов. Темы различных глав пересекаются, и вы должны представлять, что приемы, которые использовались в одной ситуации, могут также применяться в других, связанных с ней ситуациях

1 ... 121 122 123 124 125 126 127 128 129 ... 150
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Психология критического мышления - Дайана Халперн.
Комментарии