Чудесная жизнь клеток: как мы живем и почему мы умираем - Льюис Уолперт
Шрифт:
Интервал:
Закладка:
Большинство генов, которые находятся в наших клетках, содержат в своем составе намного больше нуклеотидов, чем реально требуется для синтеза белков. Те нуклеотиды, которые не нужны для синтеза, называются нитронами. Они копируются на РНК, но перед тем, как она может начать синтез новых белков, удаляются.
Те области РНК, которые непосредственно кодируют последовательность аминокислот в белках, называются аксонами. Они вступают в дело лишь после того, как интроны ретируются при помощи хитроумного механизма, который называется «сращиватель РНК». Удаляя интроны, он одновременно проверяет состояние эксонов и гарантирует то, что они четко связаны воедино. После этого РНК разрешается покинуть клеточное ядро и перейти в область цитоплазмы.
При этом существует еще одно затруднение. Когда РНК разрезается ради извлечения из нее интронов, а затем сращивается опять, то часто эксоны соединяются в неверном порядке. Это приводит к тому, что они начинают синтезировать совсем не те белки, которые нужны. Поэтому специальные механизмы клетки тщательно следят за сращиванием эксонов, чтобы в конечном счете синтезировались именно те белки, которые действительно необходимы, и именно в тех местах клетки, где их ждут.
Активация гена и последующее копирование на РНК содержащейся в нем наследственной информации зависят от воздействия особых белков — так называемых транскрипционных факторов, — которые привязываются к специальным контрольным зонам ДНК. Эти контрольные зоны сами не осуществляют кодирование новых белков — они лишь опознают транскрипционные факторы и используются особым белковым механизмом, который передает генетические коды РНК для дальнейшего синтеза белков. Транскрипция начинается в промоторной области, которая располагается непосредственно перед кодировочной областью. Процесс транскрипции гена начинается только в том случае, если надлежащий транскрипционный фактор достигает соответствующей контрольной зоны. Мы говорим о том, что ген активирован, если осуществляется его транскрипция в РНК; если же транскрипция не осуществляется, то такой ген считается неактивированным.
Для работы с отдельным геном может быть задействована не одна, а сразу несколько контрольных зон, ибо активация гена может потребоваться в самых различных ситуациях и обстоятельствах. Невозможно переоценить важность контрольных зон. Мы вновь вернемся к ним, когда станем рассматривать вопросы развития эмбриона.
Белок, синтезированный одним геном, может активировать несколько других генов или равным образом деактивировать их. Таким образом, в клетке существует система взаимодействия различных генов, определяющая поведение клетки и ее изменение со временем.
Срощенная РНК покидает клеточное ядро, проникает в цитоплазму и направляется к рибосомам — местам сборки белков. Рибосомы — это небольшие округлые белковые образования, в которые попадают РНК и в которых в точном соответствии с последовательностью нуклеотидов РНК происходит синтез новых белков — так, что расположение аминокислот синтезируемых белков точно соответствует последовательности нуклеотидов матричной РНК.
Само превращение последовательности нуклеотидов РНК в последовательность аминокислот вновь синтезируемого белка в рибосомах происходит при помощи небольших молекул РНК, известных как «передаточные РНК». Эти молекулы способны распознавать набор из трех нуклеотидов, которые считываются за один раз, и прикрепляться к той аминокислоте, которая соответствует этому троичному набору. Например, аминокислота лизин кодируется последовательностью нуклеотидов «ААА» или «AAG», а аминокислота тирозин — последовательностью нуклеотидов «UAC» либо «UAU». Передаточная РНК распознает эти последовательности нуклеотидов. Затем вступает в действие рибосома — своеобразная клеточная «фабрика» по производству новых белков.
Рибосомы являются одними из наиболее сложных образований клетки. В их состав входят белки и РНК. Рибосома движется вдоль молекулы РНК и соединяет воедино аминокислоты при помощи передаточных РНК. Рибосомы работают весьма быстро — как и все остальные части клетки — и за одну секунду способны соединить две аминокислоты. В результате белки синтезируются в период времени от 20 секунд до нескольких минут.
В настоящее время мы способны понять природу мутаций и то, как они могут влиять на поведение клетки. Мутация ДНК может поменять последовательность нуклеотидов в генах и тем самым привести к изменению последовательности расположения аминокислот во вновь синтезируемых белках. Это способно изменить пространственную структуру белка и его функции, привести к образованию белка-мутанта, что может иметь как негативные, так и позитивные последствия. Все это мы рассмотрим в последующих главах. Мутации, меняющие функции белков в яйцеклетках или сперматозоидах, являются основными факторами эволюции, поскольку они будут унаследованы следующими поколениями. Изменения в ДНК, расположенных в контрольных зонах, также влияют на поведение клеток, поскольку они определяют, когда и в какой клетке происходит активация наследственного гена.
ДНК человека содержат 3 миллиарда основных пар нуклеотидов. В среднем человеческий ген содержит 27 тысяч основных пар нуклеотидов, однако при этом лишь 1300 пар нуклеотидов в составе такого гена используются для кодирования последовательности аминокислот во вновь синтезируемом белке, определяя тип и последовательность примерно 430 его аминокислот. Люди, не являющиеся родственниками, отличаются друг от друга в среднем всего на 1 процент, однако подобное различие включает в себя и различия в трех миллионах их нуклеотидов.
Трудно представить себе, как такой гигантский объем информации может содержаться в наших клетках. Меня поразила выставка, где вся последовательность наследственной информации человека была для наглядности представлена в виде книг, заполнявших собой огромный шкаф. Достаточно открыть любую из этих книг на какой угодно странице и увидеть, что каждый из этих томов заполняет описание последовательности нуклеотидов, напечатанное мелким шрифтом: «ATGCTGACCGATTAGTCA» — и так далее, при этом в каждом таком томе не меньше пятисот страниц. Достаточно просто взглянуть на это, чтобы испытать чувство неподдельного почтения к способности клеток хранить и использовать наследственную информацию. Если вытянуть содержащуюся в клетке цепочку генов в длину, то длина ее составит два метра. Каким же образом клетка находит нужный ей ген? И откуда клетка знает, в какой из этих книг и на какой именно странице находится нужный ей ген? Что определяет переход гена в активированное состояние и создание РНК, содержащей информацию, необходимую для синтеза какого-то конкретного белка?
Ответ на этот вопрос раскрывает фундаментальные особенности механизма контроля за поведением клетки, ибо именно это определяет, какие белки содержатся в клетке, что, в свою очередь, непосредственно определяет и само поведение клетки.
Теперь мы видим, что делают гены — или, вернее, чего они не делают, ибо во время всего процесса синтеза новых белков они остаются пассивными. Они лишь задают код, по которому будут синтезированы белки, и образуют контрольные зоны, которые запускают процесс синтеза белков. Когда же приходит время продублировать сам ген, белки также выполняют эту работу.
Необходимо всегда помнить, что ДНК — это не чертеж, по которому строится весь организм. Это станет совершенно очевидно, когда мы будем рассматривать вопросы развития эмбриона. Тем не менее совершенно поразительным является то, что гены управляют огромным множеством процессов, проистекающих в клетке за счет того, что в данный момент времени задают синтез тех или иных белков. В наших клетках содержится около 30 тысяч различных генов, и если мы представим, что несколько сотен различных белков могут обусловить какое-то определенное состояние клетки, то получается, что если внутри клетки активированы различные комбинации генов, то мы имеем дело с миллиардами разных клеток, каждая из которых синтезирует свой уникальный набор белков.
Сейчас ученые признают, что структура генов и роль ДНК — гораздо более сложные, чем это считалось прежде. Лишь небольшая часть ДНК, содержащихся в наших хромосомах — менее 2 процентов, — непосредственно отвечает за синтез белков. В структуре хромосом существует множество повторяющихся участков, функция которых до конца не ясна. Некоторые исследователи вообще считают, что в структуре ДНК присутствует множество «лишних», не играющих никакой роли, и просто накопленных за многие годы эволюции звеньев.
Звенья, в которых содержатся повторяющиеся нуклеотиды, составляют не менее 10 процентов объема хромосом. При этом некоторые из них перемещаются из одного места в другое. Подобные переходы приводят к тому, что звено ДНК копируется и затем вставляется в какое-то другое место. Многие мутации, которые происходят в клетке, как раз и порождаются тем, что эти звенья переходят в кодировочные или контрольные зоны и тем самым меняют их характер.