Категории
Самые читаемые
onlinekniga.com » Документальные книги » Биографии и Мемуары » Шелест гранаты - Александр Прищепенко

Шелест гранаты - Александр Прищепенко

Читать онлайн Шелест гранаты - Александр Прищепенко

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 9 10 11 12 13 14 15 16 17 ... 86
Перейти на страницу:

Свободные нейтроны активно взаимодействуют с любыми ядрами, причем весьма разнообразно. Вероятность взаимодействия описывают «сечениями», измеряемыми «барнами» (барн равен 10-24 см2), уподобляя то или иное ядро мишени соответствующей площади для летящего нейтрона. Одно и то же ядро может представлять различной площади мишень для разных сценариев взаимодействия: например отскок нейтрона от ядра может быть намного более вероятен, чем его захват ядром с испусканием гамма-кванта. Таких сценариев очень много и по совокупности информации о них можно «узнать» го или иное ядро так же точно, как по отпечаткам пальцев — человека.

Образованные делением частицы при многочисленных столкновениях с окружающими атомами «отдают» им свою энергию, повышая, таким образом, температуру окружающего вещества. После того, как в сборке с делящимся веществом появились нейтроны, мощность тепловыделения может возрастать или убывать, а может быть и постоянной. Параметры сборки, в которой число делений в единицу времени не растет, но и не уменьшается, называют критическими. Но критичность сборки может поддерживаться и при большом, и при малом числе нейтронов, находящихся в ней в данный момент времени. В зависимости оттого, больше или меньше это число, большей или меньшей может быть и мощность тепловыделения. Тепловую мощность увеличивают, либо «подкачивая» в критическую сборку дополнительные нейтроны извне, либо делая сборку сверхкритичной (тогда дополнительные нейтроны «поставляют» все более многочисленные «поколения» делящихся ядер). Например, если надо повысить число нейтронов (а значит, и тепловую мощность) в реакторе, то его выводят на такой режим, что мгновенных нейтронов для достижения критичности недостаточно, а вот с учетом запаздывающих — критическое состояние едва заметно переходят. Тогда реактор не «идет в разгон» а набирает мощность достаточно медленно — так, что прирост ее можно в нужный момент остановить. Это делают, вводя в сборку поглотители нейтронов (например — стержни, содержащие кадмий или бор), что уменьшает плотность нейтронов в сборке, а значит — и выделяющуюся в ней тепловую мощность.

Образующиеся при делении нейтроны часто пролегают мимо окружающих ядер, не вызывая повторного деления. Ясно, что чем ближе к поверхности «рожден» нейтрон, гем больше у него шансов вылететь из делящегося материала и никогда не возвратиться обратно (подумайте, кто из суетящейся у обрыва толпы скорее других свалится в пропасть!) Поэтому формой сборки, сберегающей нейтроны в наибольшей мере, является шар: для данной массы вещества он имеет минимальную поверхность. Ничем не окруженный (уединенный) шар без полостей внутри сделанный из 94 %-ного U235 становится критичным при массе в 49 кг, и радиусе 85 мм. Если же сборка из такого же урана — цилиндр с длиной равной диаметру, она становится критичной при массе в 52 кг.

Поверхность уменьшается и при возрастании плотности (критичность обратно пропорциональна ее квадрату). Поэтому-то взрывное сжатие, не меняя количества делящегося материала, тем не менее, может приводить сборку в критическое состояние.

И, наконец, о роли энергии нейтронов. В неделящемся веществе, «отскакивая» от ядер, нейтроны передают им часть своей энергии, тем большую, чем «легче» (ближе им по массе) ядра. Чем в большем числе столкновений поучаствовали нейтроны, тем более они «замедляются», и, наконец, приходят в тепловое равновесие с окружающим веществом («термализуются»). Скорость «тепловых» нейтронов 2200 м/с, что соответствует энергии 0,025 эВ. Время, за которое нейтроны термализуются ощутимо человеком: это миллисекунды (но будем помнить, что это — время снижения быстрыми нейтронами своей энергии на много порядков, до «тепловых» значений; в разы же они могут снизить свою энергию за небольшое число столкновений, что займет доли пикосекунды). При замедлении нейтроны могут ускользнуть из замедлителя, захватываются его ядрами, но с замедлением их способность вступать в реакции возрастает очень существенно, поэтому нейтроны, которые «не потерялись», с лихвой компенсируют убыль численности.

Так, если шар делящегося вещества окружить замедлителем, многие нейтроны покинут замедлитель или будут поглощены в нем, но будут и такие, которые вернутся в шар («отразятся») и, потеряв свою энергию, с гораздо большей вероятностью вызовут акты деления (рис. 2.3). В процессе обмена нейтронами между замедлителем и делящимся веществом установится усредненная, пониженная в сравнении с той, с которой они рождаются, энергия нейтронов, вызывающих деление. Если шар окружить слоем бериллия толщиной 25 мм, то, можно сэкономить 20 кг U235 и все равно достичь критического состояния сборки. Но за такую экономию придется заплатить временем: каждое последующее поколение нейтронов, прежде чем вызвать деление, должно сначала замедлиться. Эта задержка для взрыва неблагоприятна: в единицу времени уменьшается число поколений нейтронов, вызывающих деление, а значит, энерговыделение «затягивается». Чем меньше делящегося вещества в сборке, тем больше требуется замедлителя для развития в ней цепной реакции, а деление идет на все более низкоэнергетичных нейтронах. В предельном случае, когда критичность достигается только на совсем уж тепловых, например — в растворе солей урана в воде[16], масса сборок — сотни граммов, но раствор просто периодически вскипает. Выделяющиеся в объеме пузырьки пара уменьшают среднюю плотность делящегося вещества и ценная реакция прекращается. Затем пузырьки покидают жидкость и повторяется вспышка делений. Можно, конечно, закупорить сосуд и тогда пар высокого давления разорвет его. Это будет типичный тепловой взрыв, лишенный всех «ядерных» признаков, о которых речь пойдет далее, но, тем не менее — опасный.

Рис. 2.3. Вероятность того, что медленный нейтрон вызовет деление, на порядки превышает ту же вероятность для «быстрого» нейтрона (сечения реакции деления U233 на нейтронах разных энергий)

Вот как описывается в книге Р. Юнга «Ярче тысячи солнц» закончившийся трагично эксперимент доктора Слотина.

«Задача его состояла в том, чтобы достигнуть, но не превзойти критической точки самого начала цепной реакции, которую он должен был немедленно прерывать, раздвигая полушария. Если бы он «проскочил» критическую точку или недостаточно быстро прервал начавшуюся реакцию в самом ее начале, то масса превзошла бы критическую величину и последовал бы ядерный взрыв…

…Неожиданно его отвертка соскользнула. Полушария сошлись слишком близко, и масса стала критичной. Мгновенно все помещение наполнилось ослепительным блеском. Слотин вместо того, чтобы укрыться и, возможно, спасти себя, рванул голыми руками оба полушария в разные стороны и прервал тем самым цепную реакцию.».

(adsbygoogle = window.adsbygoogle || []).push({});
1 ... 9 10 11 12 13 14 15 16 17 ... 86
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Шелест гранаты - Александр Прищепенко.
Комментарии