Категории
Самые читаемые
onlinekniga.com » Компьютеры и Интернет » Прочая околокомпьтерная литература » Журнал "Компьютерра" №707 - Компьютерра

Журнал "Компьютерра" №707 - Компьютерра

Читать онлайн Журнал "Компьютерра" №707 - Компьютерра

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 10 11 12 13 14 15 16 17 18 ... 27
Перейти на страницу:

Здесь уместно привести примеры таких термодинамически "живых" объектов-процессов: пламя костра, огонь, бегущий по бикфордову шнуру… В последнем случае, очевидно, система способна к самодвижению. Подобных примеров читатель может найти множество, однако не следует забывать, что мы сейчас говорим лишь о "жизни" как определенной категории термодинамических процессов и не более. Мы не случайно взяли здесь слово "жизнь" в кавычки. Сами по себе горящие дрова или порох бикфордова шнура - всего лишь системы, увеличивающие свою энтропию, растрачивая имеющиеся запасы химической энергии, то есть вполне подвластные Второму закону термодинамики.

Оптимистическая трагедия

Устойчивое существование имеет место, пока поддерживаются нужные условия, однако эти условия могут разрушаться самим существованием нелинейной системы. Так, автокаталитические реакции, производящие собственный катализатор, убыстряющимися темпами исчерпывают запасы реагентов, приближая собственный конец, если запасы реагентов не пополняются. Такое пополнение может осуществляться искусственно в лабораторной установке или естественно за счет обмена веществ в организме. Но ни в том, ни в другом случае не может быть вечным.

Таким образом, целостность связана с темпоральностью в смысле временности, преходящести существования и в том случае, когда система способна к динамической устойчивости.

Добронравова И.С., Физика живого как феномен постнеклассической науки//Физика живого. 2001. Т.9. №1.

 

Второй подход к снаряду

Точка зрения

Что является характерной особенностью жизни? Когда мы считаем материю живой? Тогда, когда она продолжает делать что-либо, двигаться, участвовать в обмене веществ с окружающей средой и т. д., - все это в течение более длительного отрезка времени, чем, по нашим ожиданиям, могла бы делать неодушевленная материя в подобных условиях.

Эрвин Шредингер

Огромной преградой для практической разработки идей конструирования искусственных живых объектов в XIX–XX веках стала… сама биология.

Классическая биология, как наука о природе живого, издавна развивалась в русле идей эволюционизма Дарвина. Этот подход не то чтобы был закрыт для попыток глубокой физической интерпретации исследуемых явлений, но как бы не нуждался в них. Попытки ряда ученых описывать биологические процессы с позиций классической термодинамики лишь подтвердили уже известные факты и не дали новых идей для моделирования или экспериментального воспроизведения процессов возникновения живого.

Общую теорию систем, о которой мы упоминали выше, развивали не биологи. Процессы в живых системах стали рассматриваться как подмножество реализаций общесистемных законов - здесь активность проявляли "системщики". На другом фронте квантовые физики с энтузиазмом пытались применить свои теории для описания феномена жизни - здесь радикальную позицию занял Шредингер (да, да, тот самый, чье имя носит знаменитое уравнение). Он попросту заявил, что процессы жизнедеятельности несводимы к известным законам классической физики, поскольку "жизнь - это упорядоченное и закономерное поведение материи, основанное не только на одной тенденции переходить от упорядоченности к неупорядоченности, но и частично на существовании упорядоченности, которая поддерживается все время".

Механизмы поддержания этой упорядоченности и даже ее увеличения стали понятны много позднее - лишь в рамках теории самоорганизации.

Сегодня мы можем с большой долей уверенности утверждать, что наконец-то овладели теоретическим аппаратом, который может стать инструментом не просто описания процессов жизнедеятельности, но и практического проектирования живых систем "с нуля".

Еще раз отметим, что на первых порах мы не ставим перед собой задачу воспроизвести сразу весь спектр известных свойств земных биологических объектов, включая изменчивость и наследственность. Важно понимать, что в рамках решения задачи искусственного создания живых систем конкретные, соответствующие этим свойствам механизмы могут быть построены на совершенно иных принципах, нежели это "сделано" в природе. Лучше выйдет или хуже - вопрос другой.

Кроме того, широта охвата явлений, присущая синергетике, позволяет с ее помощью синтезировать жизнеподобные (в смысле самоорганизации) системы самой разной природы - начиная от физико-химических и кончая геофизическими. Во всех известных на сегодня системах, которые демонстрируют жизнеподобное поведение, возникающее вследствие процессов самоорганизации, главным является наличие большого числа элементов, играющих роль небиологических аналогов клеток организма. Обычно этими элементами являются молекулы, входящие в состав системы. Вот как об этом писала философ и синергетик А. Баблоянц: "при удалении от состояний химического равновесия… химические реакции "оживают". Они чувствуют время, распознают информацию, различают прошлое и будущее, правую и левую стороны. Реакции могут проявлять различные формы самоорганизации, например, образовывать мозаичные структуры".

Завершая этот раздел, хотелось бы отметить, что все формы жизни, которые, вероятно, удастся построить на базе физических или химических процессов самоорганизации, по сути своей окажутся столь далекими от нас и нашего обычного интуитивного понимания живого, что никакого "диалога разумов" скорее всего не получится (если даже разработчикам удастся наделить искусственные системы функциями самоидентификации в среде обитания и обработки информации). А ведь теоретически подобные живые системы могут существовать в природе, появившись естественным (самоорганизация!) путем. Отсюда нетривиальные вопросы: как их распознать? и как с ними все-таки договориться?

Инженерия живого

Мнение

Вот что получается, когда исследователь вместо того, чтобы идти параллельно и ощупью с природой, форсирует вопрос и приподнимает завесу: на, получай Шарикова и ешь его с кашей.

проф. Преображенский

 (Михаил Булгаков, "Собачье сердце")

Вернемся к более привычным формам живого. Как уже говорилось, функционирование живой системы возможно лишь в ограниченном объеме пространства, в который необходимо непрерывно подводить вещество и энергию и откуда вовне будут поступать высокоэнтропийные "отходы жизнедеятельности". Конечно, сразу напрашивается аналогия с клеткой, однако почти сферическая капсула не является единственной формой ограничения пространства функционирования неравновесной системы. Возможна, к примеру, реализация в форме полого волокна, квазидвумерных слоистых структур "бутербродов"; в случае реализации неравновесных процессов в жидкости "стенками" клетки могут быть границы раздела фаз вещества; если же мы синтезируем живую систему на базе неравновесных процессов поглощения-излучения электромагнитной энергии (как в лазерах на основе распределенных в пространстве рабочего тела периодических неоднородностях показателя диэлектрической проницаемости), границы могут быть даже неосязаемы физически, так как будут представлять собой поверхности "нулевого коэффициента усиления" - поверхности, на которых коэффициент обратной связи распределенного резонатора будет "обнуляться".

Тем не менее абсолютное большинство исследователей, занятых практическим изготовлением искусственных живых объектов, экспериментируют именно с клеточными структурами. Почему?

Голый прагматизм, в общем, никогда не являлся атрибутом научного поиска, однако желаемый практический результат научного исследования или пионерской технологической разработки, конечно же, в немалой степени определяет методики и подходы к созданию нового. Сегодня нам нужны живые системы, во многом аналогичные или полностью повторяющие "конструкции" естественных систем. Просто потому, что мы знаем, как они должны работать, - мы это видим на естественных аналогах.

Ясно, что проще (технологически проще) иметь дело с самообновляемой клеточной структурой, в которой синтезируется нужное нам химическое вещество, чем переводить синтез в систему реакторов, вводя в рассмотрение огромное число дополнительных параметров, связанных с объемными эффектами, температурными и концентрационными градиентами и т. п. Если же мы хотим создать развивающийся организм, то клеточная модель строения как нельзя лучше соответствует принципу дифференциации функций клеток взрослого организма.

Афоризм

Наша жизнь, в сущности, кукольное представление. Нужно лишь держать нити в своих руках, не спутывать их, двигать ими по своей воле и самому решать, когда идти, а когда стоять, не позволять

1 ... 10 11 12 13 14 15 16 17 18 ... 27
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Журнал "Компьютерра" №707 - Компьютерра.
Комментарии