Категории
Самые читаемые
onlinekniga.com » Научные и научно-популярные книги » Физика » Физика движения. Альтернативная теоретическая механика, или Осознание знания. Книга в двух томах. Том II - Александр Астахов

Физика движения. Альтернативная теоретическая механика, или Осознание знания. Книга в двух томах. Том II - Александр Астахов

Читать онлайн Физика движения. Альтернативная теоретическая механика, или Осознание знания. Книга в двух томах. Том II - Александр Астахов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 12 13 14 15 16 17 18 19 20 ... 22
Перейти на страницу:

Во-первых, отметим, что в уравнении (4.2.13) фактически произведена равноценная замена переменных: переменная (ω (t)) заменена на переменную (r (t)). Но как мы выяснили выше, такая замена вполне правомерна.

Тогда:

Fк (r) = m * ω * V

Это пока ещё только общий вид.

Теперь перепишем уравнение в символах мерного вращения, т.е. в символах меры радиальных систем отсчёта:

Fкрад = m * ωрад * V» (4.2.14)

где V»: – абстрактная для приведённого вращения с постоянным радиусом радиальная скорость

Уравнение (4.2.14) соответствует традиционному виду классического выражения для силы Кориолиса только без «двойки», но пока они идентичны опять же только по общему виду. Для того чтобы убедиться в полной идентичности этих уравнений осталось показать, что:

ωрад * V» = ωе * Vr

То есть необходимо показать, что угловая скорость приведённого вращения эквивалентна переносной угловой скорости, а абстрактная, т.е. несуществующая для приведённого вращения с постоянным радиусом радиальная скорость, всё же косвенно эквивалентна реальной радиальной скорости относительного движения. Вообще говоря, это опять же автоматически следует из приведения выражения (4.2.3) к традиционному виду, показанного выше в настоящей главе. Но для скептиков покажем это строго математически другим путём.

Из мерной динамики вращательного движения следует:

ωрад / ωе = r / rо (*)

Но радиусы можно представить, как произведение радиальной скорости на время (Vr * t):

t * Vr / (t * V») = r / rо

Следовательно, для того чтобы любая заданная радиальная скорость относительного движения в любом заданном интервале времени поворотного движения была бы эквивалентна абстрактной радиальной скорости приведённого вращения, должно соблюдаться соотношение, полученное после сокращения последнего выражения на время (t):

Vr / V» = r / rо

Тогда, учитывая (*) получим:

ωрад / ωе = Vr / V»

Но это есть не что иное, как:

ωрад * V» = ωе * Vr

Следовательно:

Fкрад = m * ωрад * V»= m * ω * V

Что и требовалось показать (ЧТП)!

***

Некоторые современные авторы в отношении величины силы и ускорения Кориолиса имеют точку зрения, сходную с нашей моделью поворотного движения. Однако наши взгляды на природу явления Кориолиса расходятся, тем не менее, и с ними. Наиболее близки к нашей точке зрения на явление Кориолиса авторы из Удмуртии (maholet.aero.ru), они пишут:

Применение теоремы Кориолиса для свободного движения (например, планеты) не соответствует закону сохранения энергии.

Ускорение у Кориолиса завышено в 2 раза ошибкой при взятии производной вектора переносной скорости, из-за отрыва от физики.

Сила Кориолиса (при движении в трубке) количественно верна, но не обоснована физически (жирный шрифт наш). Половина силы Кориолиса, действительно, является силой инерции: при приближении к центру вращения тело тормозится трубкой, при удалении – разгоняется. Другая же половина силы обусловлена действием центробежной силы, точнее, её проекцией на направление, перпендикулярное радиусу движения в плоскости орбиты (о ней будем говорить далее). Эта половина силы не даёт ускорения – не позволяет трубка. Сила Кориолиса – это сумма двух различных сил».

Мы не согласны с авторами «Махолета» в их трактовке статической части поддерживающей силы, т.к. она обусловлена не центробежной силой, а именно внешней тангенциальной закручиающей силой, поддерживающей вращение на неизменном уровне. Однако не трубка нейтрализует половину поддерживающей силы Кориолиса, т.к. в отсутствие истинной силы Кориолиса ничто в принципе не мешает такой силе ускорить и саму трубку, а истинная сила Кориолиса.

Более подробно работа авторов из Удмуртии рассматривается в главе 10.

Другая версия, по некоторым параметрам сходная с нашей точкой зрения изложена в статье КОРИОЛИСОВА СИЛА И КОРИОЛИСОВО УСКОРЕНИЕ Канарёва Ф. М. от 2.06.2010 г., источник: SciTecLibrary.ru. (E-mail: [email protected]). Более подробно работа Канарёва также рассмотрена в главе 10.

На сегодняшний день мы узнали только о двух авторах, которые в той или иной степени близки нам по взглядам на явление Кориолиса. Однако ни у кого из них нет чёткого представления о физическом смысле явления Кориолиса. Во всяком случае, в своих работах они его чётко не излагают.

Канарев Ф. М. сам ещё не определился, какую версию он считает правильной. Его статья больше похожа на размышления вслух, чем на научную работу. Интуиция учёного подсказывает ему, что что-то не так в классической модели поворотного движения. Однако пока что он не нашёл правильного решения проблемы. Не вяжется у Канарёва и с направлениями силы и ускорения Кориолиса. Поэтому мы с нетерпением ждём продолжения его статьи, в котором он намеревался представить коррекцию кинематики сложного движения.

PS: Недавно продолжение статьи появилось, но к сожалению в нём Канарев Ф. М. допускает всё те же ошибки, что и в первой статье. Физический смысл явления Кориолиса так и остался не раскрытым. Анализ новой статьи см. в главе 10.

Удвоение силы вовсе не обязательно связано с удвоением ускорения. Причина удвоения классической силы (напряжения) Кориолиса прояснена в нашей версии явления Кориолиса. В классическом поворотном движении с неизменяемой угловой скоростью удвоение классического напряжения Кориолиса обеспечивает истинная сила Кориолиса, которую приходится компенсировать при сохранении неизменной угловой скорости. Канарёв не разделяет силу Кориолиса на статическую и динамическую часть. В этом отношении нашими единомышленниками являются только авторы «Махолета, да и то только в некотором приближении.

К сожалению, никто из авторов этих двух работ не представил своего видения природы явления Кориолиса на уровне его физического механизма. Тем не менее, обнадеживает тот факт, что не всех устраивает классическая версия поворотного движения, т.е. основания для сомнений в ее непогрешимости все же есть. Люди, для которых истина важнее опасений навредить своей репутации подвергая сомнению прописные с точки зрения официальной науки истины и важнее званий, все-таки не скрывают своего видения противоречий классической физики и в частности в поворотном движении. Таким образом, мы, по крайней мере, не одиноки в своих сомнениях.

Совпадение величины силы (напряжения) Кориолиса с ее классическим теоретическим значением, рассчитанным по неправильному линейному приращению можно, конечно же, отнести и к случайным совпадениям. Однако для большинства авторов, повторяющих классический вывод, это фактически банальная подгонка под ответ. Кто-то однажды допустил ошибку, приняв на веру абсурдную классическую динамику вращательного движения, а потом под напряжение Кориолиса, которое возможно было подтверждено эксперементально, подвели теорию. При этом все последующие авторы в своих выводах учитывали лишь авторитет предшественников и исторически сложившееся научное мнение.

Ошибка определения ускорения поворотного движения прочно вошла в математический метод дифференцирования криволинейного движения по приращению его координат. А может быть, она только закрепила это ошибочное дифференцирование. Приращение скорости это всегда приращение расстояния, пройденного с ускорением, но приращение координат не всегда соответствует приращению этого расстояния. Поэтому вторая производная от приращения координат не всегда соответствует реальному геометрическому ускорению криволинейного движения. Классическое дифференцирование приращения криволинейного движения этого не учитывает, что диктует необходимость пересмотра динамики и кинематики сложного движения в классической физике.

4.4. Второй вариант проявления ускорения Кориолиса. Относительная скорость направлена вдоль окружности, перпендикулярно радиусу вращающейся системы

Второй вариант классического ускорения Кориолиса, которое якобы проявляется при перпендикулярном радиусу поворотном движении, описан, например, в упомянутой выше работе Матвеева А. Н. «Механика и теория относительности» 3-е издание, Москва, «ОНИКС 21 век», «Мир и образование», 2003г. (см. фотокопию в главе 4.1). На странице (404) Матвеев пишет: «В случае движения точки перпендикулярно радиусу, т.е. по окружности, относительная скорость (vотн. = ωотн. * r), а угловая скорость вращения точки в неподвижной системе координат (ω + ωотн.), где ω – угловая скорость вращающейся системы координат. Для абсолютного ускорения получаем следующее выражение:

1 ... 12 13 14 15 16 17 18 19 20 ... 22
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Физика движения. Альтернативная теоретическая механика, или Осознание знания. Книга в двух томах. Том II - Александр Астахов.
Комментарии