Категории
Самые читаемые
onlinekniga.com » Домоводство, Дом и семья » Развлечения » Математические головоломки и развлечения - Мартин Гарднер

Математические головоломки и развлечения - Мартин Гарднер

Читать онлайн Математические головоломки и развлечения - Мартин Гарднер

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 12 13 14 15 16 17 18 19 20 ... 97
Перейти на страницу:

Более изощренная стратегия основана на следующем методе.

Сделайте первый ход в центр, а затем постарайтесь занять отдельные клетки по диагонали или по вертикали так, как это сделано на рис. 38.

Рис. 38

Если ваш противник помешает вам достроить вертикаль, вы придете по диагонали. Если он попытается помешать вам достроить диагональ, вы сделаете ход, заняв клетку на вертикали.

Как только вам удастся соединить стороны вашего цвета «прореженной» цепочкой, запереть вас уже невозможно, а отсутствующие звенья цепи вы сможете восстановить, потратив на каждое из них по два хода. Такая стратегия очень эффективна при игре против новичка, но опытный игрок сможет парировать ее.

Совсем иной принцип положен в основу стратегии машины для игры в гекс, сконструированной К. Шенноном и Э. Ф. Муром. Вот описание этого устройства..[15]

После исследования игры мы пришли к заключению, что достаточно разумный ход можно было бы находить следующим образом: создать двумерное потенциальное поле, соответствующее игральной доске, белые фишки заменить положительными зарядами, черные фишки — отрицательными. Верх и низ «доски» должны нести отрицательный заряд, а ее правая и левая стороны — положительный. Очередному ходу соответствует некоторая вполне определенная седловая точка поля.

Для проверки наших предположений было построено аналоговое устройство, состоящее из сети сопротивлений и щупа для обнаружения седловой точки. Если не считать небольших усовершенствований, подсказанных практикой, общий принцип оказался вполне пригодным. Если машина делала первый ход, то, играя с людьми, она выигрывала около 70 % всех партий.

Нередко ей случалось озадачивать своих создателей странными на первый взгляд ходами, но при более подробном рассмотрении эти ходы неизменно оказывались вполне разумными. Принято считать, что вычислительные машины прекрасно справляются с длинными вычислениями, но малопригодны для решения более сложных, логических задач. Как ни парадоксально, но построенная нами машина вполне разумно оценивала позицию в игре.

Хуже всего она играла в конце партии, когда игра приобретала комбинационный характер. Любопытно заметить также, что машина для игры в гекс заменила обычную вычислительную процедуру на обратную, решив существенно дискретную проблему с помощью аналогового устройства.

Желая подшутить над специалистами по теории игр, знающими о существенных преимуществах первого игрока, Шеннон построил еще одну машину для игры в гекс, которая, к немалому удивлению знатоков, выигрывала даже в тех случаях, когда делала второй ход.

Доска, на которой играла эта машина, в одном направлении была короче, чем в другом (размеры доски 7x8 клеток), но Шеннон, установив ее на прямоугольной подставке, замаскировал неравенство сторон. Лишь немногие из игроков, заподозрив неладное, догадывались пересчитать клетки вдоль сторон доски. Машина играла в соответствии с выигрышной стратегией, описанной выше. Ответные ходы она могла бы делать мгновенно, но специально предусмотренные термисторы замедляли ее «реакцию». Перед каждым ходом машина «размышляла» от одной до десяти секунд, создавая у зрителей впечатление, будто она проделывает сложнейший анализ положения на доске.

Ответы

Решения трех задач, возникающих при игре в гекс (см. рис. 36), показаны на рис. 39.

Рис. 39

Полный анализ всех ходов, возможных в этих задачах, оказывается слишком длинным, чтобы его здесь приводить: крестиками отмечены лишь первые правильные ходы «белых».

Глава 9. АМЕРИКАНСКИЙ ИЗОБРЕТАТЕЛЬ ГОЛОВОЛОМОК СЭМ ЛОЙД

Имя Сэма Лойда вряд ли что-нибудь скажет большинству читателей этой книги, хотя в свое время он был признанным гением головоломок и пользовался широчайшей известностью. В течение полувека, вплоть до своей смерти, последовавшей в 1911 году, Лойд оставался непревзойденным мастером занимательной задачи, подлинным королем головоломок. Им опубликованы тысячи великолепных задач, в основном математического характера, многие из которых не утратили своей популярности и поныне.

В действительности было два Лойда — отец и сын. После смерти Лойда-старшего сын отбросил приставку «младший» и продолжил дело отца. Сидя в своей крохотной и темной конторе в Бруклине, Лойд-младший сочинял головоломки для отделов развлечений газет и журналов, издавал книги по занимательной математике, придумывал фокусы. Но сын (Лойд-младший скончался в 1934 году) не обладал отцовской изобретательностью, и его книги мало чем отличались от других наспех составленных компиляций из работ отца. Лойд-старший родился в 1841 году в Филадельфии у «состоятельных, но честных родителей» (собственное выражение Лойда).

В 1844 году его отец, агент по продаже недвижимого имущества, перевез семью в Нью-Йорк, где Сэм до 17 лет посещал общеобразовательную школу. Если бы молодой человек окончил колледж, то из него вполне мог бы выйти выдающийся математик или инженер.

Но Сэм не стал поступать в колледж. Причиной тому в значительной мере явились шахматы.

В течение десяти лет Лойд только и делал, что передвигал по доске шахматные фигуры. В то время шахматы были необыкновенно популярны; многие газеты вели шахматные отделы, где помещались задачи, придуманные читателями. Первая задача Лойда была опубликована одной нью-йоркской газетой, когда автору было всего 14 лет. На протяжении следующих пяти лет он настолько продуктивно сочинял шахматные головоломки, что стал весьма известен в шахматном мире. В 16 лет Лойд стал редактором отдела задач в Chess Monthly («Шахматный ежемесячник»), который тогда издавали Д. У. Фиск и молодой шахматный мастер П. Мерфи.

Позже Лойд редактировал шахматные отделы в одних газетах и под различными псевдонимами регулярно посылал придуманные им задачи в другие.

В 1877–1878 годах Лойд вел еженедельную шахматную страничку в приложении к журналу Scientific American. Каждая его статья начиналась с заглавной буквы, составленной из шахматных фигур задачи. Эти странички вошли в книгу Лойда «Шахматная стратегия», которую он собственноручно набрал и напечатал. Книга Лойда, содержащая 500 его избранных задач, и поныне пользуется огромным спросом.[16]

Чаще других перепечатывалась задача Лойда, которую он придумал в 18-летнем возрасте. Эта задача может служить прекрасной иллюстрацией к умению Лойда облекать самые сложные вопросы в форму анекдота.

В 1713 году шведский король Карл XII вместе со своим войском был окружен турками под Бендерами. Не обращая внимания на пули и ядра, король с одним из своих министров часто играл в шахматы. Однажды, когда у них возникла позиция, изображенная на рис. 40, Карл, игравший белыми, объявил противнику мат в три хода. В этот момент шальная пуля сбила с доски белого коня. Карл внимательно изучил новую позицию, улыбнулся и сказал, что коня ему и не нужно, поскольку и без коня он может поставить противнику мат в четыре хода. Едва он успел это сказать, как вторая пуля сбила с доски белую пешку h2. Карл невозмутимо оглядел оставшиеся на доске фигуры и объявил противнику мат в пять ходов.

Рис. 40

У этой истории есть продолжение. Через несколько лет после появления задачи Лойда один немецкий шахматист заметил, что если бы первая пуля сбила вместо коня белую ладью, то Карл все равно мог бы объявить мат в шесть ходов. Читатели, увлекающиеся шахматами, наверное, с удовольствием поразмыслят над этой замечательной «четырехсерийной» задачей.

Первая головоломка, принесшая коммерческий успех, была придумана Лойдом, когда ему еще не исполнилось и двадцати лет. Она изображена на рис. 41 точно в таком виде, как ее нарисовал Лойд.

Рис. 41

Разрезав картинку вдоль пунктирных линий и переставив ее части (не сгибая их при этом), мы увидим наездников, сидящих верхом на ослах. П. Т. Барнум приобрел у Лойда право издания нескольких таких картинок и выпустил их в продажу миллионными тиражами под названием «П. Т. Барнум и его волшебные ослики». Говорят, что за несколько недель эта головоломка принесла Лойду 10000 долларов. Не утратила она своей популярности и в наши дни.

С точки зрения математики самым интересным изобретением Лойда следует считать игру в пятнадцать. В конце сороковых годов нашего века интерес к игре в пятнадцать возобновился, коробочку с 15 квадратными шашками и сейчас еще можно встретить в магазинах игрушек. Общий вид этой головоломки показан на рис. 42.

Рис. 42

В коробочке могут свободно перемещаться 15 перенумерованных квадратных шашек. Два последних квадрата переставлены. Требуется, не вынимая из коробочки, передвинуть квадраты так, чтобы их номера расположились по порядку, а пустой квадрат оказался в правом нижнем углу. В семидесятых годах прошлого века игра в пятнадцать была в большой моде, ей посвящались даже научные статьи в математических журналах.

1 ... 12 13 14 15 16 17 18 19 20 ... 97
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Математические головоломки и развлечения - Мартин Гарднер.
Комментарии