Удивительная физика - Нурбей Гулиа
Шрифт:
Интервал:
Закладка:
А как увеличить трение в 5, 10… 100 раз? Можно, оказывается, и это. Нужно только обмотать один трущийся предмет о другой, например, веревку о вал или опору. Так делают, когда закрепляют корабли на пристанях, обматывая канат вокруг кнехтов – столбиков на причале. Влияние навивки на силу трения просто поразительное!
У Жюля Верна в романе «Матиас Сандорф» описан случай, когда силач Матифу силой своих рук задержал спуск целого корабля, который должен был потерпеть аварию. Правда, он успел намотать канат-швартов на вбитую в землю железную трубу и держал, как показано на рис. 50. В романе не сказано, сколько раз силач обмотал канат вокруг трубы, а это принципиально важно, и вот почему. Силы натяжений входящего в намотку F1 и выходящего из нее F0 канатов относятся между собой как основание натуральных логарифмов e = 2,718 в степени, которая равна произведению коэффициента трения f на угол намотки α в радианах:
Эта формула выведена великим Эйлером. По этой формуле легко рассчитать, что если бы Матифу обмотал канат вокруг трубы всего 3 раза, то уменьшил бы натяжение каната в 500 раз! Тут и ребенок мог бы удержать его: даже если судно, съезжая со стапелей, натягивало канат с силой F1 = 50 кН, то на Матифу пришлось бы всего 100 Н.
Очень интересны так называемые «шпили», также работающие по формуле Эйлера. Представьте себе вращающийся «шпиль» барабана, на который намотан несколькими витками канат, один конец которого привязан к тяжеленному грузу – судну, грузовому вагону, контейнеру и т. п. А другой конец свободно лежит на земле. Подходит человек, слегка тянет за конец каната – и огромная тяжесть ползет к «шпилю». Вращение «шпиля» медленное, его почти не заметно, и кажется, что человек тянет такой груз сам. На самом деле человек тянет конец каната с небольшой силой F0, допустим, 50 Н; если канат навит на шпиль всего в три оборота, то таким усилием человек может сдвинуть контейнер массой 104 кг или железнодорожный вагон массой до 2,5 х 105 кг!
Рис. 51. Защита от вора по формуле Эйлера: 1 – веревка; 2 – груз; 3 – болт; 4 – тонкая нитьПригодилась формула Эйлера когда-то и автору. Повадился как-то в его мастерскую вор. Отпирает замок, заходит, берет, что захочет. И вот автор подвесил веревками на двух болтах над дверью тяжелую доску, а на нее еще слой цемента насыпал. А веревку 5 раз обернул вокруг болтов и к концам веревок привязал тончайшую «паутинную» нить, которую провел над порогом (рис. 51). Ночью вор, конечно же, не заметил этой «паутинной» нити, порвал ее и освободил концы веревок, держащих через намотку довольно большой груз. И по формуле Эйлера доска рухнула на вора, к тому же щедро напудрив его сверху цементом!
Магия вращательного движения
Можно ли вращаться по инерции?
Действительно, раскрутил карусель, – и вертись себе по инерции. Если подшипники карусели хорошие, то это можно делать достаточно долго. Современные маховики в накопителях энергии вращаются без помощи мотора более недели. Чем не вращение по инерции? Более того, если «помогать» этому маховику мотором, то он будет вращаться с совершенно постоянной угловой скоростью. Можно ли это назвать вращением по инерции?
Строго говоря, нет. Мы же раскритиковали Галилея, который именно движение точки по кругу считал инерционным. Но это потому, что на точку в этом случае должна обязательно действовать внешняя сила. А тогда движение уже не инерционное.
Поступим хитрее – возьмем много точек, расположенных по кругу, скрепим их друг с другом покрепче и раскрутим. Вот мы и получили маховик, который вращается, заметьте, без приложения внешних сил (мы его не трогаем!). Поместим такой маховик в космическое пространство – не понадобится ни подвес, ни мотор. Предмет сам собой вращается, никаких сил не требует.
Отвечайте, коллеги-физики, – по инерции он движется или нет?
Вопрос, казалось бы, для школьника, но боюсь, что он станет проблемой и для специалиста-физика.
Ответ первый:
– Да он вообще не движется, центр его масс, который находится на оси, неподвижен, стало быть, маховик неподвижен!
– Нет, – не согласимся мы, – а как же его кинетическая энергия? Может ли неподвижное тело обладать кинетической энергией и немалой?
Второй ответ:
– Это движение по инерции, потому что оно происходит без какого-либо внешнего воздействия!
– Позвольте, – возразим мы, – но такое движение согласно первому закону Ньютона может быть только прямолинейным и равномерным. Может, Ньютон чего-нибудь не учел?
Все учел Ньютон, просто вопрос не так уж тривиален, как может показаться сразу.
В чем различие между инерцией прямолинейного и вращательного движения?
Как известно, инерция, или инертность, массивной точки зависит только от ее массы. Масса является мерой инертности тела при прямолинейном движении. Значит, при таком движении на инерцию не влияет распределение масс в теле, и это тело можно смело принять за материальную (массивную) точку. Масса этой точки равна массе тела, а расположена она в центре тяжести, или, что почти то же, в центре масс, или центре инерции тела (поэтому «тело» в законах Ньютона справедливо заменено «материальной точкой»).
Проведем следующий опыт. Попытаемся вращать вокруг вертикальной оси стержень с насаженными на него массами (грузами), например, металлическими шарами. Пока эти шары находятся близ центра, раскрутить стержень легко, инертность его мала. Но если мы раздвинем массы на края стержня, то раскрутить такой стержень станет намного труднее, хотя масса его осталась без изменения (рис 52). Стало быть, инертность тела при вращении зависит не только от массы, но и (даже в большей степени) от распределения этих масс относительно оси вращения. Мерой инертности тела при вращении является так называемый момент инерции.
Рис. 52. Изменение момента инерции тела при неизменной его массе: 1 – стержень; 2 – грузМоментом инерции тела относительно данной оси называется величина, равная сумме произведений масс всех частиц тела на квадраты их расстояний от этой оси.
Таким образом, разница в мере инертности прямолинейного движения и вращения состоит в том, что в первом случае она измеряется массой, а во втором – моментом инерции.
Далее. Как мы знаем, закон инерции устанавливает эквивалентность относительного покоя и равномерного прямолинейного движения – движения по инерции. Ибо нельзя никаким механическим опытом установить, покоится ли данное тело или движется равномерно и прямолинейно. Во вращательном движении это не так. Например, совсем не безразлично, покоится ли волчок или вращается равномерно, с постоянной угловой скоростью. Угловая скорость твердого тела является величиной, характеризующей его физическое состояние. Угловая скорость может быть определена (например, измерением центростремительных сил) без какой-либо информации о положении тела по отношению к «абсолютной» системе координат. То есть если даже вся Вселенная исчезнет, а останется только наше вращающееся тело, то мы и в этом случае узнаем его угловую скорость. Поэтому термин «абсолютная угловая скорость тела» в отличие от «абсолютной скорости точки» должен употребляться в прямом смысле (без кавычек).
Таким образом, механические явления в покоящейся и вращающейся системах будут протекать по-разному, не говоря уже о том, что падение и движение тел во вращающейся системе происходят иначе, чем в неподвижной: достаточно хорошенько ее раскрутить – и она развалится на части из-за возникших в ней напряжений.
Поэтому второе отличие состоит в том, что прямолинейное движение и покой эквивалентны, а вращение, даже с постоянной угловой скоростью, может быть четко отделено не только от покоя, но и от вращения с другой угловой скоростью.
Вот, пожалуй, и все основные отличия. Остальное настолько одинаково, что можно взять на себя смелость сформулировать по образу и подобию ньютоновых законов «закон» инерции вращательного движения абсолютно твердого тела: «Изолированное от внешних моментов абсолютно твердое тело будет сохранять состояние покоя или равномерного вращения вокруг неподвижной точки или оси до тех пор, пока приложенные к телу моменты внешних сил не заставят его изменить это состояние».
Почему же абсолютно твердое тело, а не любое? Потому что у нетвердого тела из-за вынужденных (или заранее предусмотренных) деформаций при вращении может измениться момент инерции, а это равносильно изменению массы тела в прямолинейном движении. Мы же не упоминаем этого случая, когда формулируем закон инерции, иначе он бы начинался так: «Изолированная от внешних воздействий материальная точка постоянной массы…» А эта точка может легко менять свою массу. Самолет или ракета, двигаясь за счет сжигания горючего, довольно существенно изменяют свою массу. Даже человек, пройдя достаточное расстояние, изменяет свою массу настолько, что это фиксируется медицинскими весами. А как отразится это изменение массы на инерции? Ведь при изменении массы возникает дополнительная, так называемая реактивная сила. О каком же движении по инерции может идти речь, когда на тело действует сила?