Категории
Самые читаемые
onlinekniga.com » Научные и научно-популярные книги » Научпоп » Нобелевские премии. Ученые и открытия - Валерий Чолаков

Нобелевские премии. Ученые и открытия - Валерий Чолаков

Читать онлайн Нобелевские премии. Ученые и открытия - Валерий Чолаков

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 13 14 15 16 17 18 19 20 21 ... 88
Перейти на страницу:

К 1937 г. немецкий физик Отто-Ган и его сотрудница Лизе Майтнер также занимались получением новых элементов. Вначале они считали, что эти исследования помогут продолжить периодическую таблицу, внеся в нее новые элементы. В 1938 г. Ган и его ассистент химик Фриц Штрассман неожиданно обнаружили среди продуктов распада, полученных при бомбардировке нейтронами урана и тория, элемент барий. Одновременно с ними во Франции Ирен Жолио-Кюри, работавшая с югославским физиком Павле Савичем, открыла среди продуктов деления ядра урана лантан — элемент, который, как и барий, расположен в середине таблицы Менделеева.

В начале 1939 г. Отто Ган высказал предположение, что под ударами нейтронов ядро урана расщепляется на два ядра. Это явилось полной неожиданностью для ученых и произвело сенсацию в научном мире.

Дальнейшие исследования показали, что в процессе расщепления урана выделяется гигантское количество энергии. Почти одновременно и независимо друг от друга Энрико Ферми, Фредерик Жолио-Кюри и Лео Сцилард установили, что при распаде урана возникают 2—3 новых нейтрона. Ферми сразу же догадался, что в этом скрывается возможность осуществления цепной самоподдерживающейся реакции деления. И всего лишь через два года он реализовал свой замысел, построив первый атомный реактор. 2 декабря 1942 г. в Чикагском университете была осуществлена первая цепная реакция деления урана. Это был день, когда человек овладел атомной энергией. Через 12 лет в Советском Союзе (в городе Обнинске) начала действовать первая в мире атомная электростанция, которая использовала тепло, полученное в атомном реакторе. 16 июня 1945 г. в пустыне штата Нью-Мексико (США) было проведено испытание первой атомной бомбы. Физики выпустили джинна из бутылки.

Расщепление атома привело к созданию оружия невиданной разрушительной силы, но оно указывало и путь к решению энергетических проблем человечества. Именно учитывая эту грандиозную перспективу, Нобелевский комитет принял решение присудить Отто Гану Нобелевскую премию по химии за 1944 г.

Все эти открытия были сделаны в ходе опытов, направленных на получение трансурановых элементов. Эксперименты Резерфорда и других пионеров в этой области проводились с естественными источниками заряженных частиц — природными радиоактивными изотопами. Лишь в 1932 г. английский физик Джои Дуглас Кохрофт и ирландский физик Эрнест Томас Синтон Уолтоп сконструировали так называемый каскадный генератор для ускорения заряженных частиц. Электрическое поле напряжением 700 тыс. эВ (электрон-вольт) сообщало частицам энергию, достаточную для проникновения в ядра легких элементов и начала ядерных реакций. Однако, несмотря на то что каскадный генератор явился большим достижением инженерного искусства, его возможности были ограниченны. Требовалась принципиально новая идея.

Такую идею выдвинул в 1929 г. Эрнест Орландо Лоуренс, работавший в Калифорнийском университете в Беркли. Он разработал конструкцию магнитного резонансного ускорителя — циклотрона, где заряженные частицы двигались по спирали между полюсами большого электромагнита, поле которого изменялось синхронно с движением частиц. Первый циклотрон, построенный Лоуренсом в 1931 г., создавал разность потенциалов в 10 млн. эВ, что в 15 раз превышало напряжение в генераторе Уолтона и Кокрофта, тогда как напряжением подаваемое на дуаиты, составляло всего лишь несколько сотен тысяч вольт.

.Почти одновременно с Лоуренсом шведский физик Густав. Адольф Изинг также. предложил способ ускорения заряженных частиц повторяющимися импульсами, однако при этом предполагалось, что частицы движутся по прямой. Этот замысел лег в основу конструкций линейных ускорителей.

Это один из примеров того, что большинство крупных открытий обычно делается не одним, а одновременно — и часто независимо — несколькими исследователями. Но, как мы уже. говорили, Нобелевская премия индивидуальна. Возможно, было бы более правильным, считать, что награждение одного ученого является символическим признанием усилий всего «невидимого коллектива» исследователей, большинство из которых остаются неизвестными широкой публике.

Циклотрон Лоуренса открыл, новую, эпоху в ядерной физике. Принципиально новый принцип ускорения заряженных частиц, предложенный в 1944 г. советским физиком Владимиром Иосифовичем Векслером и в 1945 г. независимо американским физиком Эдвином Маттисоном Макмилланом, позволил значительно увеличить возможности ускорителей, и на сегодня главным ограничением здесь являются финансовые затраты. Сейчас в мире построены гигантские ускорители, в которых частицы получают энергию порядка миллиардов эВ. Строительство еще более мощных ускорителей — вопрос только времени.

За свое открытие Лоуренс был удостоен в 1939 г. Нобелевской премии по физике. Кокрофт и Уолтон в 1951 г. также стали лауреатами Нобелевской премии по физике. С помощью их каскадного ускорителя были осуществлены превращения ряда атомов легких элементов.

В мае 1940 г. Эдвин Макмиллан и его молодой ассистент Филипп Абельсон на циклотроне Лоуренса бомбардировали урановую мишень нейтронами. Химический анализ мишени показал наличие неизвестного элемента. Так был получен первый трансурановый элемент. Его назвали нептунием — по названию планеты Нептун, которая находится в Солнечной системе за планетой Уран. В таблице Менделеева новый элемент был внесен под номером 93. Одновременно с ними нептуний получили также Отто Ган и Лизе Майтнер, но в слишком малых количествах, чтобы его можно было исследовать химическим путем. К концу того же года Макмиллан вместе с Глённом Теодором Сиборгом открыли еще один элемент, получивший номер 94. Следуя той же логике, ученые назвали его плутонием (планета Плутон находится за Нептуном). Исследования нового элемента показали, что он, подобно урану, под действием медленных нейтронов может порождать цепную реакцию и, следовательно, пригоден как ядерное топливо.

Занятия современной алхимией пришлись по душе Гленну Сиборгу, и он с увлечением продолжил свои исследования. Спустя некоторое время были разработаны тончайшие методы химического анализа веществ, получаемых в ничтожно малых количествах. В 1942 г. Сиборг развил далее идею Макмиллана о том, что трансурановые элементы образуют группу, подобную так называемым редкоземельным элементам из группы лантана. Новое семейство элементов оказалось в группе актиния. Сходство между актиноидами и лантаноидами явилось еще одним блестящим подтверждением периодической таблицы химических элементов.

При участии Сиборга был синтезирован ряд трансурановых элементов. В 1951 г. он и Макмиллан стали лауреатами Нобелевской премии по химии за открытие плутония. Сиборг и после этого продолжал активно заниматься работой по синтезу трансурановых элементов. Последним элементом, в синтезе которого он принял активное участие, был элемент под номером 101 (менделевий), полученный в 1955 г.

В дальнейшем группа трансурановых элементов продолжала пополняться. Были получены элементы под номерами.102 (нобелий), 103 (лоуренсий) и 104 (курчатовий). Последнее время этот раздел радиохимии пребывает в застое. Но ученые не теряют надежды, что удастся синтезировать и другие элементы и что где-то в области элемента под номером 114 будет обнаружен «остров стабильности».

Модели ядра

В первое десятилетие нашего века физики уже довольно много знали об элементарном носителе электрического заряда — электроне. Из химических экспериментов и физических исследований каналовых лучей было известно, что наименьшим носителем положительного заряда является ион водорода. Это было установлено Вином в 1898 г. и окончательно доказано в 1914 г., когда Резерфорд открыл частицу, названную им протоном.

Из этих двух типов частиц, связанных силами электромагнитного взаимодействия, физики строили модели не только атомов, но и атомного ядра. Было установлено, что массы атомных ядер обычно превышают общую массу протонов, которые должны были бы находиться в ядре, чтобы, обеспечить электрическую нейтральность атома (положительный заряд протонов должен компенсировать отрицательный заряд электронов в атоме). Учены? высказали предположение о существовании внутриядерных электронов, которые нейтрализуют часть заряда протонов. Эта схема, между прочим, была использована для объяснения бета-распада, при котором ядра «выбрасывают» электроны.

Первая модель атомного ядра была весьма искусственной, но в арсенале физики того времени просто, не было ничего более подходящего. Вскоре были получены данные, которые уже не удавалось объяснить с помощью такой модели. К их числу относится так называемая «азотная катастрофа». Некоторые характеристики ядер азота, в частности их спин, невозможно было объяснить на основе старой модели. В теории наступил кризис. Он был преодолен лишь в начале 30-х годов, когда было доказано, что в атомном ядре кроме протонов есть и другие частицы (но не электроны).

1 ... 13 14 15 16 17 18 19 20 21 ... 88
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Нобелевские премии. Ученые и открытия - Валерий Чолаков.
Комментарии