Чёрные дыры и Вселенная - Игорь Новиков
Шрифт:
Интервал:
Закладка:
Подобным же образом можно «раскачивать» электромагнитные волны в резонаторе. Так называется полость с зеркальными стенками, отражающими электромагнитные волны. Если в такой полости с зеркальными стенками и с зеркальным поршнем имеется электромагнитная волна, то, двигая поршень вперед и назад с частотой, вдвое больше частоты электромагнитной волны, мы будем менять амплитуду волны. Двигая поршень в «такт» колебаниям волны, можно увеличить амплитуду, а значит, и интенсивность электромагнитной волны, а двигая поршень в «противотакт», можно гасить волну. Но если двигать поршень хаотически — и в такт и в «противотакт», — то в среднем всегда получится усиление волны, то есть в электромагнитные колебания энергия «накачивается».
Пусть теперь в нашей полости — резонаторе имеются волны всевозможных частот. Как бы мы ни двигали поршень, всегда найдется волна, для которой движение поршня происходит в такт. Амплитуда и интенсивность этой волны возрастут. Но чем больше интенсивность волны, тем больше она содержит фотонов-квантов электромагнитного поля. Итак, движение поршня, изменяя размер резонатора, ведет к рождению новых фотонов.
После знакомства с этими простыми примерами вернемся к вакууму, к этому морю всевозможных виртуальных частиц. Для простоты мы будем говорить пока только об одном сорте частиц — о виртуальных фотонах — частицах электромагнитного поля. Оказывается, процесс, подобный рассмотренному нами изменению размеров резонатора, который в классической физике ведет к усилению уже имеющихся колебаний (волн), в квантовой физике может приводить к «усилению» виртуальных колебаний, то есть к превращению виртуальных частиц в реальные. Так, изменение гравитационного поля со временем должно вызывать рождение фотонов с частотой, соответствующей времени изменения поля. Обычно эти эффекты ничтожны, так как слабы гравитационные поля. Однако в сильных полях ситуация меняется.
Еще один пример: очень сильное электрическое поле вызывает рождение из вакуума пар заряженных частиц — электронов и позитронов.
Вернемся из нашего краткого экскурса в физику пустоты к черным дырам. Могут ли рождаться частицы из вакуума в окрестностях черных дыр?
Да, могут. Это было известно давно, и в этом не было ничего сенсационного. Так, «при сжатии электрически заряженного тела и превращении его в заряженную черную дыру электрическое поле возрастает настолько, что рождает электроны и позитроны. Подобные процессы изучали академик М. Марков и его ученики. Но такое рождение частиц возможно и без черной дыры, надо лишь любым способом увеличить электрическое поле до достаточной величины. Ничего специфического для черной дыры здесь нет.
Академик Я. Зельдович показал, что рождаются частицы и в эргосфере вращающейся черной дыры, отнимая от нее энергию вращения. Такое явление подобно процессу, открытому Р. Пенроузом, о котором мы говорили в главе 3.
Все эти процессы вызываются полями вокруг черной дыры и приводят к изменению этих полей, но они не уменьшают саму черную дыру, не уменьшают размеры области, откуда не выходит свет и любое другое излучение и частицы.
Открытие Хоукинга
Сенсационное открытие было сделано в 1974 году английским теоретиком С. Хоукингом. В учебнике по гравитации американских физиков Ч. Мизнера, К. Торна и Дж. Уилера, вышедшем еще до упомянутого открытия, о работах С. Хоукинга сказано, что в них «проявляется не только огромная интуиция, глубина и разносторонность, но также и дар необыкновенной решимости в преодолении тяжелейших физических трудностей, в стремлении найти и понять истину». С. Хоукинг показал, что существует квантовый процесс рождения частиц самой черной дырой, ее гравитационным полем, приводящий к уменьшению массы и размера черной дыры. На первый взгляд это кажется удивительным. Ведь при образовании черной дыры все процессы на сжимающейся звезде быстро замедляются, «застывают» для внешнего наблюдателя, гравитационное поле везде становится неизменным во времени. А такое поле рождать частицы не может. Следовательно, если во время формирования черной дыры переменное поле произведет какое-то (очень малое) количество частиц, поток этих частиц от возникающей черной дыры, как и все процессы, будет очень быстро затухать по мере приближения поверхности звезды к гравитационному радиусу. С. Хоукинг же утверждает, что это не так, поток не затухнет совсем, а будет продолжаться и после образования черной дыры. В чем же здесь дело?
Дело в том, что внутри черной дыры поле вовсе не застыло. Там неизменность во времени невозможна, все внутри дыры обязано двигаться, падать к центру. С этим обстоятельством и связан удивительный процесс, открытый С. Хоукингом. Мы помним, что в обычных условиях в вакууме виртуальные частицы на миг образуют пару частица — античастица, которые тут же сливаются. В поле тяготения черной дыры одна из возникших таким образом частиц может оказаться под горизонтом и будет неудержимо падать к центру, а другая останется снаружи. Теперь уже эта пара не сможет слиться ни через миг, никогда вообще. Частица, оказавшаяся снаружи, улетит в космос; унося с собой часть энергии черной дыры, а значит, и часть ее массы.
Таким образом, возникает квантовое излучение частиц черной дырой. Правда, этот процесс обычно крайне ничтожен. Согласно расчетам С. Хоукинга черная дыра излучает как обычное нагретое тело, но нагретое до очень небольшой температуры. Так, излучение черной дыры с массой в одну солнечную массу соответствует температуре одна десятимиллионная градуса. Это, конечно, ничтожное излучение. Длина волны возникающих фотонов соответствует размерам черной дыры в 10 километров. Потеря энергии на такое излучение полностью пренебрежима.
В реальных условиях сегодняшней Вселенной падение в такую черную дыру даже отдельных атомов газа из межзвездного пространства и ничтожных потоков света, пронизывающих Вселенную, гораздо больше, чем потери на излучение. Значит, черные дыры не только не уменьшаются в размерах, но растут. Чем больше черная дыра, тем меньше температура ее излучения. Поэтому квантовое излучение гигантских черных дыр и вовсе пренебрежимо.
Черные дыры взрываются!
Прочитав предыдущие абзацы, читатель может удивленно пожать плечами: «Столь мизерное явление! Почему же оно вызвало такую бурю удивления и восторгов среди физиков?»
Прежде всего потому, что до открытия С. Хоукинга физики были уверены — статическое поле тяготения вне черной дыры никак не может рождать частицы. Переменное же поле за горизонтом внутри дыры «невидимо», «неосязаемо» для внешнего наблюдателя, и о нем, казалось, можно забыть. Но квантовые процессы как раз и характерны тем, что частица может оказаться там, где, с точки зрения классической физики, ее никак быть не должно. Например, частица может «просочиться» сквозь энергетический барьер, когда у нее не хватает энергии на его преодоление. С. Хоукинг показал, что такое свойство квантовых частиц в случае черных дыр ведет к качественно новому эффекту — квантовому испарению черных дыр. Предоставленные сами себе, без внешних воздействий, они медленно исчезают, превращаются в тепловое излучение, медленно затягиваются в пространстве и времени. Принципиальная важность открытия С. Хоукинга состоит именно в том, что опровергнуто представление о вечности черных дыр.
Но это еще не все. Чем меньше дыра, тем большей температуре соответствует ее излучение.
По мере уменьшения массы черной дыры в ходе испарения, ее температура нарастает, а значит, и процесс испарения ускоряется. Когда масса черной дыры уменьшится до тысячи тонн, температура ее излучения повысится до 1017 градусов! Процесс испарения превращается в фантастический взрыв. Эти последние тысячи тонн, сосредоточенные в микроскопическом размере, дыра излучает, а лучше сказать, взрывает за одну десятую долю секунды. Выделившаяся энергия эквивалентна взрыву одного миллиона мегатонных водородных бомб! В таком фантастическом фейерверке исчезает то, что раньше казалось вечной гравитационной бездной.
Конечно, произойти это может очень не скоро. Расчеты показывают, что если отсутствуют внешние воздействия, то черная дыра звездной массы испарится и взорвется в конце 1066-летнего периода. Столь большой срок не могут представить себе даже астрономы.
Но, вероятно, эти процессы могут играть важную роль в далеком будущем Вселенной. Об этом мы поговорим в следующей части книги.
Вернемся от последних мгновений жизни черной дыры несколько назад, к ее нормальному состоянию и посмотрим, какие частицы при этом излучаются.
Черная дыра рождает не только фотоны, но и другие частицы. Сравнительно большие черные дыры с массой в несколько солнечных обладают столь низкой температурой, что могут производить только безмассовые частицы.