Категории
Самые читаемые
onlinekniga.com » Научные и научно-популярные книги » Биология » Эволюция человека. Книга II. Обезьяны, нейроны и душа - Александр Владимирович Марков

Эволюция человека. Книга II. Обезьяны, нейроны и душа - Александр Владимирович Марков

Читать онлайн Эволюция человека. Книга II. Обезьяны, нейроны и душа - Александр Владимирович Марков

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 13 14 15 16 17 18 19 20 21 ... 112
Перейти на страницу:
тогда пришлось бы обходиться без нейромодуляторов и без внесинаптической передачи. Выброс универсального нейромедиатора во внеклеточное пространство и его восприятие внесинаптическими рецепторами в таком мозге были бы похожи на короткое замыкание. Без возможности выбрасывать разные медиаторы по выбору внесинаптическая передача потеряла бы смысл. Значит, все логические схемы пришлось бы четко и однозначно «прошивать» в железе, то есть фиксировать в системе синаптических связей. Это создало бы технические трудности при кодировании таких «общесистемных» сигналов (или настроек), как эмоции. Это создало бы еще более серьезные проблемы с гормональной регуляцией жизнедеятельности, поскольку гормональная регуляция – естественное продолжение нервной. Многие нейромедиаторы по совместительству являются и важнейшими гормонами (Жуков, 2007). Ко всем органам, работа которых управляется гормонами, пришлось бы «тянуть» дополнительные нервы – и это только одна из проблем.

Я готов допустить, что эти трудности преодолимы. Не исключено, что где-то на других планетах живут существа с мозгом, работающим на двух медиаторах. Но на нашей планете множественность нейромедиаторов является для нас, животных, очень древним эволюционным наследием, которое тянется за нами с тех незапамятных времен (более 700 млн лет назад), когда у примитивных многоклеточных еще не было нормальной нервной системы с синапсами, а клетки общались между собой при помощи разнообразных химических сигналов. Химическая регуляция взаимоотношений между клетками эволюционно гораздо древнее, чем нервная система. Многие нейромедиаторы и нейрогормоны пришли к нам прямиком из эпохи первых многоклеточных или даже из еще более ранней эпохи социальных одноклеточных – предков животных. Задолго до того, как некоторые из клеток стали нейронами, клетки уже общались между собой при помощи тех же самых нейромедиаторов и гормонов, которые и поныне используются в нервно-гормональной системе высших животных.

Еще одно ключевое отличие мозга от компьютера связано с тем, что сила сигнала, передаваемого от одного нейрона к другому (количество выделенного нейромедиатора), может меняться не дискретно (0 или 1), а плавно. Дискретность распространяется только на факт наличия или отсутствия сигнала – выброшенной нервным окончанием порции нейромедиатора, но не на размер этой порции. Плавно может меняться и чувствительность принимающего нейрона к сигналам, поступающим через данный синапс. Эта чувствительность зависит от количества и качества рецепторов, сидящих на постсинаптической мембране принимающего нейрона.

Самое же главное отличие состоит в том, что проводимость каждого конкретного синапса (определяемая количеством нейромедиатора, поступающего через пресинаптическую мембрану, и чувствительностью постсинаптической мембраны к этому нейромедиатору) может меняться в зависимости от обстоятельств. Это свойство называют синаптической пластичностью. Именно синаптическая пластичность лежит в основе способности комплексов взаимосвязанных нейронов (нейронных контуров или сетей) к запоминанию и обучению.

Есть и еще одно радикальное отличие мозга от электронно-вычислительной машины. В компьютере основной объем памяти хранится не в логических электронных схемах процессора, а отдельно, в специальных запоминающих устройствах. В мозге вся память записана в той же самой структуре межнейронных синаптических связей, которая одновременно является и грандиозным вычислительным устройством – аналогом процессора. Участков мозга, специально выделенных для длительного хранения воспоминаний, не существует. Мы помним лицо знакомого человека теми же самыми нервными клетками, которые это лицо воспринимают и распознают.

Запоминающее устройство можно собрать из трех нейронов

Нам пора поближе познакомиться с устройством памяти. Расшифровка ее клеточно-молекулярной природы – одно из самых блестящих достижений нейробиологии xx века. Нобелевский лауреат Эрик Кандель и его коллеги сумели показать, что для формирования самой настоящей памяти – как кратковременной, так и долговременной – достаточно всего трех нейронов, определенным образом соединенных между собой.

Память изучалась на примере формирования условного рефлекса у гигантского моллюска – морского зайца Aplysia. У этого моллюска нервная система очень проста и удобна для изучения – нейронов в ней мало, и они очень крупные. Моллюску осторожно трогали сифон и тотчас вслед за этим сильно били по хвосту. После такого однократного «обучения» моллюск некоторое время реагирует на легкое прикосновение к сифону бурной защитной реакцией, но вскоре все забывает (кратковременная память). Если «обучение» повторить несколько раз, формируется стойкий условный рефлекс (долговременная память).

Оказалось, что процесс запоминания организован довольно просто и сводится к ряду автоматических реакций на уровне отдельных нейронов. Весь процесс можно полностью воспроизвести на простейшей системе из трех изолированных нервных клеток. Один нейрон (сенсорный) получает сигнал от сифона (в данном случае – чувствует легкое прикосновение). Сенсорный нейрон передает импульс моторному нейрону, который в свою очередь заставляет сокращаться мышцы, участвующие в защитной реакции (Aplysia втягивает жабру и выбрасывает в воду порцию красных чернил). Информация об ударе по хвосту поступает от третьего нейрона, который в данном случае играет роль модулирующего.

Гигантский морской моллюск аплизия.

На рисунке показаны два синапса. Первый служит для передачи импульса от сенсорного нейрона к моторному. Второй синапс передает импульс от модулирующего нейрона к окончанию сенсорного.

Возьмем необученного, «наивного» моллюска. Если в момент прикосновения к сифону модулирующий нейрон «молчит» (по хвосту не бьют), в синапсе 1 выбрасывается мало нейромедиатора, и моторный нейрон не возбуждается.

Однако удар по хвосту приводит к выбросу нейромедиатора в синапсе 2, что вызывает важные изменения в поведении синапса 1. В окончании сенсорного нейрона вырабатывается сигнальное вещество цАМФ (циклический аденозинмоно-фосфат). Это вещество активирует регуляторный белок – протеинкиназу А. Протеинкиназа А в свою очередь активирует другие белки, что в конечном счете приводит к тому, что синапс 1 при возбуждении сенсорного нейрона (то есть в ответ на прикосновение к сифону) начинает выбрасывать больше нейромедиатора, и моторный нейрон возбуждается. Это и есть кратковременная память: пока в окончании сенсорного нейрона много активной протеинкиназы А, передача сигнала от сифона к мышцам жабры и чернильного мешка осуществляется более эффективно.

За эту картинку Эрику Канделю дали Нобелевскую премию. Здесь показано, как в простейшей системе из трех нейронов формируется кратковременная и долговременная память.

Если прикосновение к сифону сопровождалось ударом по хвосту много раз подряд, протеинкиназы А становится так много, что она проникает в ядро сенсорного нейрона. Это приводит к активизации другого регуляторного белка – транскрипционного фактора CREB. Белок CREB «включает» целый ряд генов, работа которых в конечном счете приводит к разрастанию синапса 1 (как показано на рисунке) или к тому, что у окончания сенсорного нейрона вырастают дополнительные отростки, которые образуют новые синаптические контакты с моторным нейроном. В обоих случаях эффект один: теперь даже слабого возбуждения сенсорного нейрона оказывается достаточно, чтобы возбудить моторный нейрон. Это и есть долговременная память.

Остается добавить, что, как показали дальнейшие исследования, у других животных, включая нас с вами, память основана на тех же принципах, что и у аплизии. Память –

1 ... 13 14 15 16 17 18 19 20 21 ... 112
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Эволюция человека. Книга II. Обезьяны, нейроны и душа - Александр Владимирович Марков.
Комментарии