Категории
Самые читаемые
onlinekniga.com » Компьютеры и Интернет » Программирование » Программирование игр и головоломок - Жак Арсак

Программирование игр и головоломок - Жак Арсак

Читать онлайн Программирование игр и головоломок - Жак Арсак

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 14 15 16 17 18 19 20 21 22 ... 53
Перейти на страницу:

И я был всем очень доволен, пока не понял внезапно, что я без раздумий бросился в ужасное предприятие. А что, если монахи говорили правду? Какую пользу мне принесет обладание богатством (ибо они должны были заплатить мне еще, если программа будет работать правильно), если вскоре наступит конец света? Безусловно, будучи убежденным рационалистом, я не очень-то всерьез принимал их истории. Но, в конце концов, это — новая форма пари Паскаля[15]. Даже если шанс, что все это верно, бесконечно мал, я не испытывал ни малейшего желания ускорять конец света. Но прошлое вернуть нельзя, и их плату я уже получил,

Мне пришла в голову поистине дьявольская мысль: эти прекрасные монахи желали конца света, чтобы как можно скорее достичь вечного счастья, вот уж я его им обеспечу, В корпус компьютера я добавил выдвижной ящик, который окрестил «концом света». В нем были под видом блока питания толстые цилиндры, на корпусах которых была маркировка конденсаторов, но в которых находились пластиковые бомбы. Маленькое изменение программы должно было вызвать взрыв сразу же после того, как наименьший диск покидал свой стержень и перед тем, как он достигал места своего назначения. Таким образом, игра никогда не должна была кончиться. Что до монахов, то они будут с восторгом представлять себе конец света в тот момент, когда завершится игра. В тот момент чудовищность моего поступка меня не шокировала. Наоборот, я был в восторге: монахи будут счастливы, а я уберегу весь мир от конца. Я дошел до того, что смотрел на себя как на благодетеля человечества. Конечно, я брал на себя риск. Программу, без сомнения, нужно было испытать. Но, как я вам уже говорил, я прошел хорошую школу — Вашу школу — и я программировал правильно.

Когда все было закончено, я отправился вручить свое произведение сияющим монахам. Она была испытана на игре в 20 дисков. Затем аппарат был пущен в работу для игры с 50 дисками и 4 стержнями. Тут я попросил у монахов разрешения удалиться: ведь мне хотелось бы привести свои дела в порядок в то небольшое время, которое осталось нам жить, что они очень хорошо понимали. Я вое Братался с полными пригоршнями золота.

Через некоторое время сообщили, что ужасный взрыв неизвестного происхождения разрушил монастырь в Индии. В живых не осталось никого. Моя программа была правильной…

Уже позже меня стали одолевать сомнения. Не были ли монахи правы? Не я ли тот, кто помешал воле богов? Не воспрепятствовал ли я выполнению работы, которая была доверена людям? Не должен ли я сконструировать игру в 50 дисков, и не следует ли ее разыграть, чтобы искупить свою вину?

С этих пор я живу в ужасе. Если я ничего не делаю, я несу на себе груз того, что я препятствую воле богов. Если я сделаю игру, что для меня не составляет никакого труда, то именно я и приведу мир к гибели… Я никому не могу довериться. Я умоляю вас, помогите мне…»

Я не стал вмешиваться. Душа Паскаля Младшего не могла сопротивляться этому удару. Он впал в безумие и немного спустя умер…

Игра 31. Рекурсивная форма.

Письмо Паскаля Младшего ставит много задач по программированию. Я не осмеливаюсь предложить вам написать рекурсивную процедуру, которая перечисляет последовательность движений дисков в игре с тремя стержнями, помеченными номерами 0, 1 и 2 (например, в форме последовательности строк ДИСК 2 ИДЕТ С 1 НА 0, дающих номер перемещаемого диска, если наименьший диск имеет номер 1, номер стержня, с которого диск снимается, и номер стержня, на котором этот диск оказывается).

Тем не менее эта процедура была бы для вас очень полезна как для наблюдения за перемещениями в течение партии, так и для изучения свойств игры.

Можете ли вы вычислить число f(n) ходов, необходимое для проведения партии в игре с n дисками? Сколько веков потребуется для проведения игры в 50 дисков, если каждый ход делается за секунду?

Я использовал игру из дерева, в которой диски были обтесаны из двух разных пород дерева, поочередно светлых и темных. Проводя игру, можно убедиться, что два диска одного и того же цвета никогда не оказываются друг на друге. Сумеете ли вы показать это с помощью рассуждения, основанного на рекурсивной процедуре? Заметьте, что это сводится к вопросу четности. Если диски занумерованы так, как это было описано выше, то диски с номерами одинаковой четности никогда не попадают друг на друга.

* Игра 32. Рисунок игры.

Напишите простую рекурсивную процедуру, наиболее образно дающую возможность увидеть движение дисков. Очень общий способ состоит в том, чтобы изобразить три стержня в виде трех строк, на которых последовательно поставлены номера дисков. Таким образом, рис. 27 представляет начальное состояние и промежуточное состояние игры с 5 дисками.

Внимание: ваша программа работает слишком быстро, и вы не видите перемещений. Вставьте цикл ожидания, чтобы замедлить игру…

Более хитрый способ представляет стержни вертикально либо как последовательность номеров, либо — что еще лучше — если у вас есть графическая система, стилизованным образом, как на рис. 26. Это труднее…

? Игра 33. Итеративная стратегия.

Таких стратегий много. Сумеете ли вы предложить такую, которая позволила бы играть по ходу в. секунду, как у монахов…

??? Игра 34. Игра с 4 стержнями.

Составьте рекурсивную программу для игры с 4 стержнями, не занимаясь представлением дисков на экране каким-либо хитрым образом. Вам и бее этого будет достаточно работы. Даже если ваш компьютер не предоставляет вам возможности вычислять рекурсивные процедуры, это поможет вам ясно увидеть задачу и найти стратегию.

Найдите способ действовать, минимизируя число ходов, и найдите их необходимое число для малых значений n. Из письма Паскаля Младшего неясно, сколько времени нужно — если каждый ход совершается за секунду — для завершения игры с 4 стержнями и 50 дисками. Вычислите его.

??** Игра 35. Составьте итеративную программу для игры с 4 стержнями.

Если теперь добавить пятый стержень, то нужно все начинать сначала, или результаты, полученные для 4 стержней, допускают немедленную экстраполяцию на случай 5 стержней?

??? Игра 36. Спички Бергсона.

Эта игра была предложена выше (игра 23). Тогда требовалось только дать компьютеру указание, что он должен будет сделать, чтобы выиграть наверняка, если исходить из 50 спичек. Теперь нужно заглянуть глубже и изучить выигрывающую стратегию в полной общности.

Как и во многих играх, есть ситуации, которые позволяют игроку выиграть наверняка (если он их знает), и другие ситуации, исходя из которых выиграть невозможно. Пусть П обозначает ситуацию, благоприятную первому игроку (или предыдущему. П — это первая буква слова «позитивный», как это заметил Роуэ Болл [BAL]). Эта ситуация хороша для меня, если это такая ситуация, которой я достигаю после своего хода. Ситуация Н благоприятна второму, «новому», игроку (неблагоприятна первому, негативна). Она хороша для меня, если это — та ситуация, которую я застаю в момент своей игры. Вся моя стратегия есть переход от ситуации Н в ситуацию П.

Это все работает, если, исходя из ситуации Н, я всегда могу достичь ситуации П с помощью разрешенного хода, и если, с другой стороны, налицо ситуация П, то я не могу достичь никакой ситуации П с помощью дозволенного мне хода. Итак:

— из ситуации Н всегда можно достичь ситуации П,

— из ситуации П можно достичь только ситуаций Н,

— выигрывающая ситуация есть ситуация П.

Игра происходит переходами между ситуациями Н и П. Победитель определяется природой — принадлежностью классу Н или П — начальной ситуации и, таким образом, определяется тем, кто начинает.

В игре в спички Бергсона ситуация характеризуется двумя целыми числами p, q:

p — число спичек, оставшихся в куче;

q — число спичек, взятых на предыдущем шаге. Тогда можно взять от 1 до 2q спичек.

Ситуация 0, q — выигрывающая для любого q.

Ситуации 1, q и 2, q суть ситуации Н. Исходя из них,; можно взять последнюю спичку. Ситуация 3, 1 есть П: исходя из нее, нельзя получить ничего, кроме 2, 1 и 1, 2, и обе эти ситуации относятся к классу Н.

Составьте программу, перечисляющую положения П вплоть до некоторого уровня.

Понаблюдайте за результатами. Попытайтесь угнать их свойства и, если вам хватит смелости, проверить их.

Вы наверняка знаете числа Фибоначчи: они определяются рекуррентным соотношением

f(n) = f(n − 1) + f(n − 2)

и единичными значениями двух первых чисел. Какой черт их сюда занес…

6. Комбинаторные задачи

Я объединил здесь различные головоломки, решение которых для компьютера в принципе нетрудно. Есть конечное число возможных случаев. Мы испытываем их все и выбираем наилучший. К этой категории относится и чемпион мира по шахматам: конечное число шахматных фигур, конечное число правил, конечное число ходов…

1 ... 14 15 16 17 18 19 20 21 22 ... 53
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Программирование игр и головоломок - Жак Арсак.
Комментарии