Нанонауки. Невидимая революция - Кристиан Жоаким
Шрифт:
Интервал:
Закладка:
Все до сих пор описанные опыты объяснялись при посредстве хорошо известных законов физики. Но как объяснить то, что мы открыли, изучая вращение и смещение молекул? Дон Эйглер повторил наши эксперименты с атомами ксенона на металлической поверхности. И пропускал «большой» электрический ток через свой одиночный атом. Да мыслимо ли это? В нашем масштабе величин ток, проходящий через некую материальную электрическую цепь, нагревает эту цепь (точнее, вещество, из которого она состоит). Когда же сильный ток проходил через атом ксенона, то, как увидел Дон Эйглер, это приводило к тому, что атом подскакивал к игле, находившейся на довольно большом расстоянии от поверхности. Вероятность скачка зависела от силы тока. Но если в нашем макромире действует эффект Джоуля, согласно которому мощность, рассеиваемая в веществе (через которое течет электрический ток), пропорциональна квадрату силы тока, то вероятность скачка, совершаемого атомом, оказалась пропорциональной не второй, но пятой степени силы тока. Никто еще так и не объяснил ни эту разницу между макро-и наномирами, ни то, откуда берется эта пятая степень. Уилсон Хо из Университета в Ирвине, штат Калифорния, споткнулся на подобном же вопросе. Он изучал вероятность приведения малюсенькой молекулы во вращение на металлической поверхности в зависимости от силы тока. Увеличивая силу тока, он заставлял молекулу вращаться и прыгать с места на место, и вероятность этих смещений тоже, как оказалось, зависела от силы приложенного туннельного тока. Итак, Дон Эйглер и Уилсон Хо показали, что молекулы подчиняются таким физическим законам, которые не известны ни в макроскопическом мире, ни в мире мезоскопической шкалы…
ЗАЧЕМ ОСТАВАТЬСЯ «ВНИЗУ»?Нанофизические эксперименты с одиночными атомами и молекулами стали с начала 1990-х годов разнообразнее и многочисленнее. Они позволяли изучать «нижний мир» напрямую, непосредственно исследуя физические явления, наблюдаемые при помощи тех материальных средств, которые имелись в распоряжении ученых и которые оказывались подходящими для условий конкретного эксперимента. Главное, чтобы был один атом или одиночная молекула и этого хватало. К любой трудности приходилось приспосабливаться, то есть находить — а то и изобретать — подходящий измерительный прибор. В нашем случае каждый раз искать или придумывать такой прибор, который смог бы дать нужные сведения об интересующем нас объекте. А раз объект чрезвычайно мал, то напрашивалось решение встраивать в большой прибор приборчик поменьше, потом еще меньше — на манер русских матрешек. До тех пор, пока не получится прибор, способный работать с молекулой.
Все эти эксперименты открыли перед наукой новое поле познания и положили начало новому научно-исследовательскому проекту. Первая цель проекта — поощрение разработок, нацеленных на создание экспериментальных установок, строящихся из считаных атомов — атом за атомом — или состоящих из одной-единственной молекулы. Что важно: речь не о потугах сделать примерно то же, что мы умеем и к чему мы привыкли на макроуровне, то есть то, что мы видим и делаем в нашем мире, но только совсем уж в микроскопическом масштабе. Нет, новизна нанопроекта заключается в том, что иные из наноустановок могут иметь гносеологический смысл: иначе говоря, есть шанс, что они заставят нас пересмотреть известные ныне законы физики или как-то их переформулировать — просто потому, что «нашим физическим законам» они не всегда подчиняются. Примеры тому будут рассмотрены в следующей главе.
Вторая цель более фундаментальна. Изготавливая приборы на квантовом уровне, физики имеют все основания полагать, что смогут увидеть квантовый мир под таким углом зрения, под которым он еще не рассматривался. Выходит, что мы в начале XXI века должны будем неким новым образом испытать все здание квантовой механики. Не означает ли это рождение некой новой научной дисциплины — нанонауки? С новыми законами, вытекающими из манипуляций с веществом атом за атомом? За многие века выработано множество новаторских экспериментальных приемов, но вот новых наук родилось куда меньше. Но, если по ходу исследования «мира внизу» наблюдается какое-то новое явление, которое квантовые законы объяснить не могут, что это, если не рождение новой науки — науки нанометрических масштабов, то есть нанонауки? Ну а если это не так, то ни к чему и изобретать новые ярлыки для области, пусть новой, но вполне поддающейся изучению привычными техническими методами, пускай и предлагаемыми некоторой технологией, тоже новой. Вот ее пусть и называют нанотехнологией. Но не нанонаукой.
Глава 4
Строим памятник? Скорее монумент
Стремясь к конструированию таких приборов и установок, в которых работают лишь одиночные молекулы или считаные атомы, нанотехнология затевает самый настоящий переворот в технологии. В самом деле весь унаследованный порядок миниатюризации опрокидывается с ног на голову. Не удивительно, что такие крошечные установки вызвали острое любопытство у ученых, желавших разобраться в нанофизике. Что, если зайти достаточно далеко по этому новому пути и, скажем, увеличивать молекулу, умножая число входящих в нее атомов? Не удастся ли превратить такую огромную молекулу в вычислительную машину? Или механическую? Это же сняло бы все препоны, мешающие дальнейшей миниатюризации в микроэлектронике и микромеханике: все запихиваем внутрь одной-единственной молекулы, и молекула становится целой машиной. Отсюда и название для подобных молекул-машин — монументальные молекулы. Не потому, что они похожи на памятники, а потому, что они — огромны, монументальны. И тем монументальнее, чем сложнее становится машина, в которую такая молекула превращается.
Прежде чем начинать подобную «монументализацию», следовало бы выяснить: а сколько атомов понадобится, чтобы молекула смогла работать как двигатель, или как приемо-передатчик, или как вычислительная машина? А потом понять, какие «части» понадобятся этой молекуле-машине — чтобы не разваливалась и работала, то есть выполняла порученные ей задачи. И наконец придумать для нее такие технические средства, чтобы она могла получать приказы и/или сообщать о своем состоянии, принимать или передавать энергию, словом, чтобы наладить обмен информацией с машиной-молекулой.
Мысль о монументализации возникла в начале 1980-х годов — именно тогда эту идею высказал Форрест Картер, химик из NRL (Исследовательской лаборатории военно-морского флота). Он работал с токопроводящими полимерами, выстраивая внутри объема полимера длинные молекулы и в таком порядке, чтобы получались пластмассы, проводящие электричество. Изучая подобные длинные молекулы, Форрест Картер вспоминал про ту молекулярную электронику, о которой мечтал Ари Авирам. Идеи о сведении любого компонента электронной схемы к одной-единственной молекуле казались необыкновенно заманчивыми — это помогло бы пробить стену вроде той, в которую уткнулась транзисторная электроника со всеми ее технологиями в конце 1950-х годов. В те времена электронные схемы собирались покомпонентно, деталь за деталью, и вообразить, что в один прекрасный день удастся единым махом соединить миллионы деталей, необходимых для создания процессора вычислительной машины, было просто невозможно. Тем не менее Джек Килби решил эту задачу — в 1958 году он изобрел интегральную схему.
Задача, за которую взялся Картер, тоже на первый взгляд не решалась: как собрать воедино миллионы молекул-компонентов, если в такой схеме соединения будут обычными — то есть металлическими проводами, пускай и очень тонкими? И ведь между молекулами должен оставаться какой-то промежуток, ну, хотя бы в десяток нанометров. И как избавиться при таких масштабах и таком построении без квантовых эффектов? А эти явления наверняка осложнят функционирование любой схемы. И соединения-провода займут столько места, а там проблемы теплоотвода, наводок и т. п. Не лучше ли втиснуть все нужные компоненты в одну огромную молекулу — и дело с концом?
И вот подобно тому, как Джек Килби избавился от затруднений с подключениями и соединениями, придумав электронную микросхему, Форрест Картер предложил решить задачу подключения молекул-компонентов, придумав в 1984 году «молекулярную интегральную схему». Чтобы не ломать голову над тем, как свести каждый компонент (диод, транзистор и т. п.) к одной-единственной молекуле, а потом мучиться с их подключением друг к другу, он предложил воплотить всю схему в одной-единственной молекуле, затолкав в нее все компоненты и все соединения между ними. Физики, разумеется, возмутились, а химики впали в оцепенение! Дожили, ничего не скажешь: мало того, что надо соглашаться с тем, что молекула годится на роль детали в электронных устройствах, так еще нужно признать молекулу, в которой умещается вся электронная схема и, значит, кроме нее, этой молекулы, больше-то ничего и не нужно!