Категории
Самые читаемые
onlinekniga.com » Детская литература » Детская образовательная литература » Диссертация рассеянного магистра - Владимир Левшин

Диссертация рассеянного магистра - Владимир Левшин

Читать онлайн Диссертация рассеянного магистра - Владимир Левшин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 14 15 16 17 18 19 20 21 22 23
Перейти на страницу:

Вскоре из воды появилась и сама лодка. Капитан в парадной форме стоял на палубе и размахивал бескозыркой. Он пригласил нас подняться на борт и спустил трап. Вернее, не трап, а лестницу с широкими ступеньками.

Чтобы подняться на палубу, надо было одолеть пятнадцать таких ступеней. Когда бочка подплыла к лестнице, я заметил, что все ступеньки перенумерованы, — бочка находилась прямо против ступеньки с номером один.

Мы с Единичкой одновременно встали на первую ступеньку и начали было подниматься вверх, как вдруг лестница…поехала вниз, прямо в море, словно эскалатор в метро! И всё время, пока мы поднимались вверх, лестница двигалась вниз. Однако бега на месте не получилось, потому что я поднимался быстрее, чем лестница опускалась, при этом и я, и Единичка, и лестница — все мы двигались очень равномерно.

Пока я успевал подняться на три ступеньки, лестница опускалась в море на две ступеньки. Мне показалось, что лестница бесконечна. Ведь вместо пятнадцати ступенек мне пришлось одолеть… Я даже не запомнил, сколько ступенек я пересчитал своими ногами. А когда наконец достиг палубы, подо мной была ступенька с таким огромным номером, что я ахнул и немедленно забыл это число.

А Единичка давно уже была наверху. До чего все же проворная девочка! Пока я преодолевал три ступеньки, она пробегала вдвое больше — шесть. Ясно. что на её последней ступеньке было написано число, ровно в два раза меньшее, чем на моей.

Единичка успела уже рассказать капитану обо всех наших приключениях, так что мне нечего было добавить. Капитан любезно приветствовал нас, обещал завтра же доставить в любую часть света, а затем повёл в салон.

То была огромная круглая комната, куда выходило девять дверей — одна входная, а восемь других вели в каюты. На корабле было как раз восемь человек команды, включая капитана. Капитан пригласил нас сесть и сказал:

— Через несколько минут, ровно в 7 часов, все члены экипажа выйдут из своих кают, и начнётся обычная церемония — приветствия и рукопожатия. Вот почему салон называется Салоном рукопожатий.

Часы пробили семь, и семь дверей раскрылись одновременно. Из кают вышли семь членов экипажа, и церемония началась. Все здоровались друг с другом, с капитаном и с нами, конечно, тоже. Я хотел было сосчитать число рукопожатий, но сбился со счёта. Впрочем, постараюсь сделать это на досуге. Покончив с рукопожатиями, все разошлись, а я решил выйти на палубу — подышать воздухом. Но оказалось, что лодка уже спустилась в воду. Пришлось прогулку отложить до другого раза. Мы с Единичкой занялись очень интересной настольной игрой. Такой интересной, что лучше я расскажу о ней в следующей главе.

ВОСЬМОЕ ЗАСЕДАНИЕ КРМ

решили совместить с походом в Планетарий, — ведь в восьмой главе диссертации речь снова шла о звёздах. Чтение, правда, состоялось накануне, и потому каждый из нас имел возможность подготовиться к обсуждению более тщательно.

В Планетарий пришли загодя, чтобы успеть до лекции обсудить ошибки, не касающиеся астрономии. А уж о звёздах поговорим потом, после соответствующей теоретической подготовки. Мы устроились на скамейке в садике и приготовились заседать. Но Нулик неожиданно попросил всех встать, отойти на несколько шагов от скамейки, а уж потом по его команде собраться вновь. При этом мы должны были сделать вид, что только что встретились, и поздороваться друг с другом. А Нулик, будьте спокойны, сумеет сосчитать число рукопожатий.

Рукопожатий оказалось 10.

— Всё ясно, — заключил Нулик. — Нас пятеро, а рукопожатий десять, то есть вдвое больше. Значит, если в салоне подводной лодки встретились 10 человек, то рукопожатий было 20.

Таня посмотрела на него укоризненно:

— Эх, ты! По-твоему, если встретились двое — скажем, ты да я, — то мы пожмём друг другу руки четыре раза?

— А почему же сейчас получилось рукопожатий вдвое больше? — недоумевал Нулик.

— Ещё одно случайное совпадение, — объяснил Сева. — Так сказать, частный случай, действительный только для пяти человек. Ведь каждый из пяти должен поздороваться с четырьмя, а четырежды пять — двадцать. Но каждая пара здоровается по одному разу. Значит, 20 надо разделить ещё на 2, вот и получается 10 рукопожатий.

— А так как в салоне было 10 человек, — продолжал Нулик, — то всем ясно, что число 10 надо умножить на 9, а затем разделить на 2. И получится 45 рукопожатий. Ай да я!

— В общем, верно, — согласился Олег. — Но рукопожатий было всё-таки меньше. Ты забыл, что Магистр и Единичка уже раньше здоровались с капитаном, ну и, конечно, друг с другом. Поэтому из 45 рукопожатий надо вычесть 3. Значит, ответ — 42.

Нулик постучал ладошкой по спинке скамейки.

— Продолжаем заседание. Слово предоставляется будущему академику Севе.

Будущий академик поклонился:

— Магистр так же сведущ в литературе, как и в математике. Иначе он не спутал бы царя Салтана с принцем Гвидоном, который, кстати, не принц, а царевич.

— Один — ноль в твою пользу! — сказал Нулик. — А теперь ты, Таня.

— Магистр и с зоологией довольно плохо знаком, — сказала Таня. — Он утверждает, что кит — это рыба, а она, то есть он, — млекопитающее. Кроме того, кит не проглотит не только акулы, но и карася. У него для этого слишком узкая глотка.

— Не лучше Магистр знает и географию, — продолжал Олег. — Если часть суши со всех сторон окружена океаном, то как бы она ни была мала, это все равно остров, а не полуостров. Потому что полуостров обязательно соединён с материком.

— Это что! — сказал я. — Между островом и полуостровом всё-таки больше общего, чем между стетоскопом и перископом подводной лодки. Стетоскопом врач выслушивает лёгкие, сердце больного, а перископ — прибор, который даёт возможность видеть под водой то, что происходит на поверхности…

— А теперь слово президенту, — объявил Нулик. — Дамы и господа! С прискорбием должен сообщить, что Магистр — самый неточный человек на свете. Во-первых, капитаны не носят бескозырок. Во-вторых, ни один капитан подводной лодки не может находиться на палубе, когда лодка всплывает на поверхность.

Президент победоносно оглядел высокое собрание и перешёл к вопросу о точных часах Магистра.

— По-моему, задача о часах очень интересная, — сказал Сева, — поэтому стоит разобраться в ней подробно. Магистр обнаружил, что часы его остановились во втором часу ночи, в то самое мгновение, когда часовая и минутная стрелки очутились на одной прямой, как бы продолжая одна другую. Он уверяет, что при этом секундная стрелка находилась перпендикулярно к часовой и минутной, образуя с каждой из них угол в 90 градусов. (Не забудьте, что у всех стрелок общий центр вращения.) Кроме того, Магистр утверждал, что часы его идеально точны. Но так ли это?

Сева обвёл нас загадочным взглядом, потом начертил на песке палочкой окружность, разделил её на 12 равных частей и пронумеровал деления. Наверху поставил 12, внизу — 6, — словом, как на всех часах. После этого он прочертил две стрелки так, как их увидел Магистр: часовую — чуть дальше отметки 1, а минутную — на столько же дальше отметки 7. Все это он проделал весьма аккуратно, так что обе стрелки в самом деле оказались на одной прямой линии.

— Секундную стрелку пока что чертить воздержусь, — продолжал Сева. — Теперь вспомним, что минутная стрелка делает полный оборот за один час, а часовой стрелке на это понадобится…

— 12 часов, — ввернул Нулик.

— Совершенно верно. Итак, угол, который отмеряет часовая стрелка, в 12 раз меньше угла, который за то же время отмеряет минутная. А теперь вернёмся к нашему чертежу.

Сева провёл диаметр круга через отметки 1 и 7, и сразу стало видно, что и часовая и минутная стрелки отклонились от этого диаметра на один и тот же угол.

— Внимание! — Сева высоко поднял указательный палец. — Перейдём от геометрии к алгебре. Обозначим число минут, прошедших с начала часа до остановки минутной стрелки, через x. А эта стрелка показывает, что прошло больше 35 минут, но меньше 40. Поэтому можно записать, что минутная стрелка отклонилась от проведённого диаметра на угол, равный x-35. При этом часовая стрелка отклонилась от того же диаметра на угол, в 12 раз меньший, чем x, то есть на x/12. Но мы уже знаем, что углы эти между собой равны: x-35=x/12. Таким образом, у нас получилось уравнение с одним неизвестным, которое мы и будем решать по всем правилам. Предоставляю каждому сделать это самостоятельно. Скажу только одно: часы Магистра остановились в 1 час 38 2/11 минуты, а 2/11 минуты — это примерно 11 секунд.

Сева наконец вычертил и третью, секундную стрелку, и все убедились, что она совсем не перпендикулярна двум другим.

— Согласитесь, что либо у Магистра очень плохое зрение, либо часы его далеки от идеальной точности, — закончил своё исследование Сева. — А скорее всего, и то и другое вместе.

Обстоятельное научное сообщение будущего академика было принято весьма благосклонно. Но Олег все же сделал одно дополнение: исследуя эту задачу, он убедился, что такое расположение стрелок, какое заметил Магистр на своих часах, невозможно не только во втором часу, но и ни в какое другое время.

1 ... 14 15 16 17 18 19 20 21 22 23
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Диссертация рассеянного магистра - Владимир Левшин.
Комментарии