Кварки, протоны, Вселенная - Владилен Барашенков
Шрифт:
Интервал:
Закладка:
В искусстве интуитивный, неосознаваемый нами элемент, основанный на ассоциациях, нюансах впечатлений и других невыразимых на логическом языке вещах, является определяющим. Во всяком случае многое начинается с него. Логика играет здесь подчиненную роль: Компьютеры умеют сочинять стихи и музыку, они создают сложные и очень красивые орнаменты. Но это не искусство, ведь они работают, так сказать, машинально — по заданному им логическому рецепту. Это ремесло, которому может обучиться каждый. Истинный художник работает иначе, истоки его искусства иные, но он не чужд логике, научному мышлению и в процессе замысла, и на завершающем этапе.
Наука и искусство дополняют друг друга. Не случайно многие выдающиеся ученые, внесшие большой вклад в самые абстрактные области человеческого знания, были страстными почитателями искусства.
ГЛАВА ШЕСТАЯ,
в которой рассказывается о больших и малых черных дырах, о космических просторах внутри электрона, о крупинках вещества, каждая из которых — целая вселенная. Вместе с автором читатель приходит к выводу, что противопоставлять микромир космосу можно далеко не всегда
Когда смотришь в объемное черно-синее небо, где на разной глубине повисли точечки звезд, трудно представить себе, что каждая из них — раскаленный и бурлящий огненный шар, вроде нашего Солнца. Мириады солнц! Яростно белых, с температурой в десятки тысяч градусов, и более спокойных красных гигантов с массой, во много раз большей, чем у нашего Солнца. Взрывающихся сверхновых и умирающих, сжимающихся в плотный сгусток нейтронных звезд. Гигантских звездных скоплений, сливающихся в нерасцепляемую глазом светящуюся искорку, и таинственных, источающих чудовищную энергию суперзвезд — квазаров.
Далекие светящие точки... Ближайшая из них в 250 тысяч раз дальше нашего Солнца. Свет от нее идет четыре года. А свет квазаров помчался к нам, когда еще не существовало, ни Земли, ни Солнца.
Звездная пыль Вселенной, звезды как атомы... А может, и вправду — атомы? Какого-то сверхмира, населенного гигантами, для которых наши звезды, как для нас элементарные частицы. А вдруг при очень большом увеличении мы обнаружим, что внутри электронов и кварков, в свою очередь, существуют миры, с миллиардами звезд и планет?
В разной форме гипотеза «многоэтажной вселенной» высказывалась в науке не раз. Она пришла к нам из глубокой древности. Более двух тысяч лет назад греческий философ Анаксагор говорил, что мир состоит из бесчисленного количества мельчайших частиц — гомеомерий, каждая из которых, в свою очередь, состоит из неисчерпаемо огромного числа еще более мелких гомеомерий и так далее, без конца. В отрывках из его дошедших до нас трудов говорится, что любая из этих частиц содержит в себе все свойства Вселенной. Внутри каждой из них, какой бы малой она ни была, «есть города, населенные людьми, обработанные поля и светит солнце, луна и звезды, как у нас».
Эта замечательная идея о бесконечной цепочке вложенных друг в друга миров поражала и занимала воображение многих ученых. В XVII в. ее разделял великий Лейбниц. Сходные мысли высказывал еще до него Джордано Бруно, а в XVIII в.— французские энциклопедисты. Подумывал о ней и XIX в. — уж очень привлекательна и вместе с тем правдоподобна была мысль о том, что в каждом зернышке, в каждой пылинке, пляшущей в луче света, спрятана целая бесконечность миров, где процветают какие-то формы жизни, может быть, похожие на нашу, а может быть, и совсем другие. Тем более что, кроме малоубедительных ссылок на Ветхий завет, этой идее трудно было что-либо противопоставить.
Бурное развитие экспериментального естествознания в XIX и XX вв., изучение молекул и атомов, открытие быстро распадающихся и превращающихся одна в другую элементарных частиц, казалось бы, полностью разрушили наивную картину мира, построенного на манер вложенных друг в друга матрешек. Однако в последнее время появились соображения, которые неожиданно заставляют серьезных ученых вернуться к идее бесконечной иерархии миров.
Развитие теории относительности привело к мысли о том, что резкой границы между космосом и микромиром нет, и в природе действительно могут существовать объекты, которые извне выглядят как микрочастицы, а изнутри — как безграничная Вселенная.
По-видимому, дело обстоит именно так. «По-видимому», так как это — выводы одной из самых трудных и плохо разработанных областей современной физики, лежащей на стыке квантовой механики и теории относительности. Здесь еще много нерешенных вопросов, и к теоретическим предсказаниям приходится относиться пока с осторожностью. В них можно было бы поверить, если теорию относительности Эйнштейна действительно допустимо экстраполировать на микроскопические явления. Но применима ли там эта теория или нет, никто пока не знает. Судьей будут эксперименты, которые еще только предстоит выполнить.
А началось все с математики. В 1922 г., исследуя уравнения общей теории относительности, мало кому в то время известный петроградский физик и математик Александр Александрович Фридман сделал сенсационное открытие. Он обнаружил, что уравнения Эйнштейна имеют решения, которые описывают полностью замкнутый мир.
Чтобы понять, что это значит, представим себе обычный шар. Его поверхность — двухмерный мир. Этот мир замкнут и в то же время безграничен — ведь по поверхности шара можно двигаться в любом направлении и нигде не натолкнуться на границу. Двухмерным существам на поверхности шара было бы очень трудно представить себе ограниченность их мира. Для этого им пришлось бы иметь дело с воображаемым трехмерным миром, который они могли бы изучать лишь с помощью математических формул.
Точно таким же образом решения Фридмана описывают замкнутый трехмерный мир — поверхность некоего четырехмерного мира. Реально никакого четырехмерного пространства не существует, иначе четвертое измерение проявлялось бы в наших экспериментах. Это всего лишь вспомогательный математический образ. Однако это не мешает трехмерному миру обладать свойством кривизны и, подобно двухмерной сфере, иметь конечный радиус.
В научно-популярной литературе идею о том, что окружающее нас пространство может быть искривленным и только в первом приближении кажется нам абсолютно плоским, часто связывают лишь с общей теорией относительности Альберта Эйнштейна. Это не точно. Еще раньше к этой идее пришел профессор Казанского университета Николай Иванович Лобачевский. Открытие им неевклидовых геометрий прямо поставило вопрос: какова же реальная геометрия нашего мира? Плоская евклидова или же искривленная неевклидова? Работы Лобачевского, а также выполненные независимо от него расчеты венгерского математика Яноша Бойяи и немецкого математика Карла Фридриха Гаусса послужили идейным фундаментом для всех последующих теорий искривленных пространств, в том числе для теории Эйнштейна и следующей из нее теории Фридмана.
В этой теории радиус искривленного мира зависит от его массы. Чем больше масса, тем большим радиусом
должен обладать мир. Они пропорциональны друг другу. Например, радиус замкнутого мира с такой же приблизительно массой, как у нашей Вселенной, составляет около триллиона триллионов километров, что выражается единицей с 24 нулями. Чтобы пересечь такой мир, световому лучу потребовалось бы более 10 миллиардов лет.
Если в искривленном пространстве не выходить за пределы областей, размеры которых много меньше радиуса мира, то его свойства (физики называют их локальными, местными) практически ничем не отличаются от свойств «плоского», не обладающего кривизной мира. В замкнутых мирах с большой массой такие «почти плоские» области могут иметь огромную протяженность. Их жители никогда и не заподозрят о кривизне и замкнутости своего мира. Окружающее их плоское пространство они будут воспринимать как «всю Вселенную», а идеи физиков о том, что, кроме этой кажущейся им бесконечной Вселенной, существует еще множество подобных миров, будут звучать для них как чистая фантазия. Ведь эти миры для них принципиально не наблюдаемы, словно их вообще нет в природе. Один мир по отношению к другому представляет собой «схлопнувшееся», самозамкнувшееся пространство. Если бы у них были внешние размеры, можно было бы говорить о разделяющем их пространстве, в которое они «погружены». Но они — точки, абсолютное ничто по отношению друг к другу, не имеющее ни физических, ни геометрических свойств. И естественно, что между ними нет никакой связи.
Выражаясь математическим языком, мы можем сказать, что формулы Фридмана описывают многосвязную Вселенную, состоящую из бесчисленного множества трехмерных миров, живущих в своем собственном ритме времени. Воображения не хватает все это себе представить!
Не стоит, впрочем, огорчаться из-за этого. Сами физики в наглядности не идут дальше двух или трех измерений, а более сложные фигуры представляют себе в виде как бы срезов, находя соответствующие двух- и трехмерные аналогии лишь для отдельных деталей. При известной тренировке можно держать в голове сразу нескольких таких срезов. Мысленный взор быстро их перебирает, и возникает иллюзия многомерного видения. Получается нечто вроде того, как мы восстанавливаем форму предметов по их теням.