Категории
Самые читаемые
onlinekniga.com » Научные и научно-популярные книги » Физика » Обзор ядерных аварий с возникновением СЦР (LA-13638) - Томас Маклафлин

Обзор ядерных аварий с возникновением СЦР (LA-13638) - Томас Маклафлин

Читать онлайн Обзор ядерных аварий с возникновением СЦР (LA-13638) - Томас Маклафлин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 15 16 17 18 19 20 21 22 23 ... 50
Перейти на страницу:

Каждый раз, когда партия водного раствора проходила через передаточную емкость, органика должна была набирать некоторое количество плутония из водного раствора. При каждом пропускании раствора через емкость концентрация плутония в трибутилфосфате и керосине увеличивалась. Та операция, после которой произошел всплеск мощности, возможно, добавила еще около 30 г плутония. Периодическая промывка установки большим количеством азотной кислоты, предположительно, уменьшала концентрацию плутония в накопленной органике. Таким образом, концентрация могла медленно увеличиваться, а затем резко уменьшалась после промывки. Перед тем, как система достигла критичности, могло пройти несколько таких циклов.

Расход раствора, сливавшегося из передаточной емкости, был недостаточен для того, чтобы можно было объяснить этим эффектом краткую продолжительность всплеска мощности.

Для наблюдения конфигурации, которую принимали жидкости при их передаче, была использована прозрачная пластиковая модель передаточной емкости. Ситуация, возникавшая при передаче раствора в емкости, показана на рисунке 26, А. Богатая органика с высокой концентрацией плутония (55 г/л) всплывала на поверхность раствора с малой концентрацией (от 6 до 7 г/л). Струя водного раствора, стекающего в центр емкости, создавала область с низкой реактивностью. Между органикой и водным раствором находилась область смешанных фаз толщиной около 7,5 см вблизи оси емкости. Эта конфигурация была подкритической.

Сразу после завершения передачи раствора центральная струя из водного раствора успевает исчезнуть, а область смешанных фаз все еще существует, и конфигурация достигает состояния с максимальной реактивностью (рис. 26, В). Разделение двух фаз происходит спустя несколько секунд после завершения пропускания раствора (рис. 26, С). Расчеты методом Монте Карло показали, что реактивность для состояния системы на рисунке 26, В, выше приблизительно на 5 в, чем на рисунке 26, А, и примерно на 10–15 в, чем на рисунке 26, С.

Очевидно, что промежуток времени между промывками азотной кислотой был достаточен для того, чтобы концентрация плутония возросла, и после пропускания раствора система стала слегка надкритической, что вызвало срабатывание аварийной сигнализации.

Во время аварии на установке находились два человека. Один из них получил, по оценкам, дозу около 2 рад, другой — менее 1 рада.

Данный инцидент иллюстрирует, какими сложными путями могут возникать аварии при работе с растворами. Хотя высокая ловушка считалась достаточной защитной мерой для предотвращения миграции плутония, она непосредственно повлияла на возникновение аварии. Трудность понимания того, что именно случилось, даже когда известно, в какой емкости произошел всплеск мощности, отлично показывает малую эффективность попыток оценки вероятности аварий для сложных процессов.

19. Радиохимический завод, шт. Айдахо, 17 октября 1978 г. 28 29 30

Раствор уранилнитрата, U(82 %), нижняя секция промывочной колонны; картина энерговыделения неизвестна; незначительные дозы облучения.

Авария произошла при выполнении технологического процесса на заводе по радиохимической переработке топлива, при котором растворенное облученное реакторное топливо подвергалось очистке в экстракционном процессе для выделения обогащенного урана и удаления продуктов деления. Технологический участок был оборудован радиационной защитой. В процессе экстракции осуществлялся противоток несмешивающихся водных и органических фаз в непосредственном контакте друг с другом. В результате контролируемого химического процесса материал переходил из водной фазы в органическую. Вдоль осей колонн были установлены цепочки перфорированных пластин, которые могли перемещаться вверх и вниз, образуя таким образом «пульсационную колонну», позволявшую повысить эффективность контакта между потоками двух жидкостей. Области с увеличенным диаметром, расположенные в верхней и нижней частях колонн, представляли собой разделительные секции, предназначенные для разделения водных и органических фаз.

В данной системе (рис. 27) менее плотная органика (смесь трибутилфосфата и керосина) подавалась в нижнюю часть колонны G-111, а водный раствор, содержащий уран и продукты деления, подавался в верхнюю часть колонны. При прохождении потоков через пульсационную колонну происходил переход урана из водной фазы в органическую, а продукты деления оставались в водном растворе. В нижней части колонны G-111 осуществлялся отбор проб водного раствора, содержащего продукты деления. Если при анализе проб содержание урана соответствовало установленной норме, то этот раствор направлялся в емкости для хранения отходов. Органическая фаза с концентрацией около 1 г/л направлялась из верхней части колонны G-111 в нижнюю разделительную секцию колонны H-100.

В колонне Н-100 органика вступала в контакт с чистым водным раствором (подававшимся сверху) для извлечения оставшихся продуктов деления. Для исключения перехода значительных количеств урана из органики в водную фазу добавляли нитрат алюминия, поддерживая его концентрацию на уровне 0,75 М. При нормальных условиях работы установки некоторое количество урана (примерно 0,15 г/л) все же захватывалось водным раствором. Поэтому данный раствор возвращался в колонну G-111, перемешиваясь с подаваемым на обработку водным раствором. Поток органики из колонны Н-100 с концентрацией, составлявшей по норме примерно 0,9 г/л, уходил в третью колонну, где уран выводился из органики азотной кислотой с концентрацией 0,005 М. Продукт из этой колонны направлялся в смесители-отстойники, где осуществлялась дополнительная очистка. В дальнейшем раствор урана направлялся в испаритель, где он концентрировался, что позволяло эффективно извлекать уран.

Несколько факторов повлияли на развитие этой аварии. На протяжении примерно одного месяца до аварии давал течь вентиль, установленный на линии подачи воды в емкость РМ-106, в которой осуществлялось приготовление буферного раствора, содержащего нитрат алюминия. Этот раствор использовался при приготовлении водного раствора для подпитки промывочной колонны Н-100. Со временем эта течь воды привела к разбавлению питательного раствора и изменению его концентрации с 0,75 М до 0,08 М. Емкость для приготовления раствора нитрата алюминия с объемом 13 400 л была оборудована сигнализацией, которая должна была указывать на происходившее изменение концентрации, однако эта сигнализация была в нерабочем состоянии. Планировалось, что измеритель концентрации будет установлен также на напорной емкости объемом 3000 л (PM-107), которая по мере необходимости наполнялась из емкости РМ-106, но это еще не было сделано. Емкость для приготовления раствора была оборудована прибором с ленточным самописцем, регистрирующим уровень раствора в ней. Однако течь в емкость была так мала, что изменение уровня можно было обнаружить только при изучении записи на ленте самописца, сделанной на протяжении нескольких дней. Ситуация осложнилась тем, что 29 сентября в самописцах кончилась бумага, и они были заправлены бумагой только после аварии. Более того, по инструкции требовалось отбирать пробы из емкости РМ-107 для определения плотности раствора, что не было выполнено.

Водный раствор, подаваемый в промывочную колонну Н-100, имел отклонения от регламента, в результате чего она работала в режиме реэкстракции, а не промывки. При этом в колонне Н-100 произошел переход части обогащенного урана из органики в водный раствор, который был направлен в колонну G-111. Образование этой частично замкнутой петли привело к постепенному увеличению количества урана в обеих колоннах. Каждый раз при добавлении разбавленного раствора в напорную емкость из емкости РМ-106 концентрация нитрата алюминия в питательном растворе еще больше уменьшалась, и реэкстракция становилась все более эффективной, пока не произошла СЦР.

Анализ водного раствора, подаваемого в колонну Н-100 (из напорной емкости РМ-107), показал, что на 15 сентября 1978 г. концентрация нитрата алюминия соответствовала норме (0,7 M). Пробы, взятые 27 сентября и 18 октября (на следующий день после аварии) имели концентрации, равные 0,47 M и 0,084 M, соответственно. Концентрация нитрата алюминия ниже 0,5 M недостаточна для предотвращения реэкстракции урана из органики, а второе из приведенных выше значений концентрации соответствует почти полной отгонке урана из органического раствора.

Рисунок 27. Оборудование первого цикла экстракции. Авария произошла в нижней разделительной секции колонны Н-100.

Напорная емкость (PM-107) была заполнена раствором нитрата алюминия из емкости PM-106 около 18 ч 30 мин 17 октября. Приблизительно через полтора часа после этого у оператора возникли трудности с поддержанием режима работы пульсационной колонны H-100. Пытаясь установить правильный режим работы, он уменьшил давление в системе, в результате чего произошло перетекание водного раствора из H-100 обратно в G-111. Приблизительно в 20 ч 40 мин по сигналу датчика, установленного на вентиляционной трубе завода, сработала аварийная сигнализация. Это произошло, вероятно, из-за радиации, вызванной появлением продуктов деления в вентиляции. Вскоре после срабатывания аварийной сигнализации произошло еще несколько срабатываний, а радиационный монитор на вентиляционной трубе зашкалил. Начальник смены и дозиметрист вышли из здания и замерили уровень радиации, достигавший 100 мбэр/ч. В 21 ч 03 мин начальник смены приказал эвакуировать персонал из здания, и к 21 ч 06 мин организованно проведенная эвакуация была завершена. На дорогах были установлены блок-посты, о происшедшем было проинформировано руководство.

1 ... 15 16 17 18 19 20 21 22 23 ... 50
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Обзор ядерных аварий с возникновением СЦР (LA-13638) - Томас Маклафлин.
Комментарии