Почему. Руководство по поиску причин и принятию решений - Саманта Клейнберг
Шрифт:
Интервал:
Закладка:
Такая статистика совершенно неверна. Но, даже если бы она оказалась справедливой, все равно ее нельзя использовать так, как это было сделано.
Мидоу базировал свой вывод на научном докладе, в котором шансы СВДС оценивались как 1: 8543, а потом заявил, что вероятность двух смертей равна 1: 8543 × 8543, то есть примерно 1: 73 000 000[5].
Но эти вычисления ложны, потому что заключение опиралось на предпосылку о независимости двух событий, ставших предметом судебного разбирательства.
Когда вы бросаете монетку, то шанс выпадения «орла» не влияет на то, как монетка упадет в следующий раз. Поскольку вероятность каждого исхода всегда равна одной второй, математически корректно перемножить оба числа, если мы желаем узнать вероятность выпадения двух «орлов» подряд.
Именно это и сделал Мидоу.
Причины СВДС точно неизвестны, однако среди факторов риска указываются и окружающие условия: к примеру, курят ли родители, употребляют ли алкоголь. Это означает, что, если в семье был один случай СВДС, другой может произойти с вероятностью намного большей, чем 1: 8543, поскольку у детей общая генетика и одинаковые условия жизни. То есть первая смерть дает сведения о вероятности второй.
Представленный случай, таким образом, можно сравнить с шансами киноактера на получение второго «Оскара». Ведь награды присуждаются не случайным образом: скорее, те же свойства (талант, известность, связи), что обеспечили кому-то первую из них, повышают вероятность получения второй.
В этом и коренилась проблема дела Кларк. Поскольку оба события не были независимыми и, напротив, для обоих могла иметься общая причина, неверно рассчитывать вероятность простым умножением. Вместо этого, анализируя шанс второй смерти, следовало принять во внимание факт первой, а значит, определить допустимость СВДС в семье, где уже произошла подобная трагедия. Показатель вероятности и то, как его использовали, были столь явно и в высшей степени ошибочны, что при рассмотрении первой апелляции защита вызвала в качестве свидетеля профессионального статистика, а Королевское статистическое общество прислало письмо с выражением своих сомнений[6].
Неверные расчеты, однако, оказались не единственной проблемой, связанной с причинностью. Обвинители попытались поставить знак равенства между вероятностью некоего события (а именно двух СВДС) в 1: 73 000 000 и возможностью того, что Салли Кларк невиновна. Подобного рода ошибочное рассуждение, когда шанс события приравнивается к вероятности вины или невиновности, известно как «заблуждение прокурора»[7].
Но мы уже знаем, что невероятные события случаются. Возможность двух смертей от СВДС мала, однако шанс того, что два ребенка в одной семье умрут младенцами, также крайне невысок. Значит, нужно не просто решать, принять СВДС в качестве объяснения или нет, а провести сравнение с другим доступным толкованием.
Таким образом, нужно было сравнивать вероятности убийства двоих детей в одной семье (а именно такова была версия обвинения) и того, что оба ребенка одних родителей подвержены СВДС (а обстоятельства дела позволяют это предположить).
Вероятность смерти от СВДС двоих детей из одной семьи не равна шансу того, что эти конкретные малыши страдали таким заболеванием. В деле есть и другие факты, включая физические доказательства, наличие мотива преступления и так далее. Их следовало учитывать наравне с вероятностными данными (например, допустимость убийства при отсутствии мотива, возможности или орудия преступления наверняка была ниже общего показателя)[8].
Наконец, любое маловероятное событие однажды произойдет, если будет совершено достаточно попыток. Некорректно низкая вероятность в деле Кларк (1: 73 000 000) все же более чем в 3 раза выше шанса выиграть в лотерею Mega Millions[9] (1: 258 000 000). Допустимость, что вы станете победителем подобной лотереи, очень мала; а как насчет шанса, что кто-то все же выиграет? Он весьма высок. Это значит, что использование только вероятностного метода для определения вины и невиновности гарантированно приводит как минимум к ряду ошибочных приговоров. Суть в том, что для отдельного человека возможность стать участником подобных событий крайне низка, но, учитывая, что в мире живут миллионы семей с двумя детьми, где-то такое событие случается.
В итоге после повторной апелляции в январе 2003 года приговор Кларк был пересмотрен. К тому моменту она провела в тюрьме три года.
* * *Почему дело Салли Кларк можно считать показательным примером ложного каузального мышления?
Расчет вероятностей чреват неточностями, но самые серьезные ошибки возникают, когда выводы основываются на одной лишь вероятности какого-либо события. Разве вы никогда не произносили чего-то вроде «Уж слишком много совпадений» или «Какова вероятность»? Подобные рассуждения порой обоснованны (в компанию приходит новый работник, и в тот же день со стола исчезает ваш любимый степлер; ясновидящая угадывает, что имя вашей родственницы начинается на «М»; два ключевых свидетеля вспоминают, что подозреваемый был одет в красную фланелевую рубашку). Однако некорректно говорить: некое событие слишком невероятно, чтобы случиться, а значит, единственное разумное объяснение – это причинно-следственная связь. Как мы уже видели, вероятность того, что какое-то событие произойдет с отдельным человеком, может быть низка, однако в принципе данное событие возможно.
Неверные каузальные объяснения, помимо несправедливых приговоров, могут повлечь и иные печальные последствия. Можно впустую потратить время и усилия на разработку лекарства, которое никогда не подействует, или на проведение неэффективной и дорогостоящей публичной политической кампании.
Моя книга – о том, как добиться в этом деле лучшего результата. Истинно научное каузальное мышление означает, что мы должны сомневаться в любых исходных предположениях, исследовать альтернативные объяснения и определять случаи, когда мы просто не можем знать, почему некое событие имело место. Иногда, для того чтобы судить, просто недостает информации (либо сведений нужного сорта), поэтому важнее всего выяснить, установить связь.
Я надеюсь, что отныне вы начнете относиться к услышанным каузальным утверждениям скептически (далее мы обсудим, какие вопросы можно задавать для оценки таких утверждений и какие «красные флажки» выискивать). Мы узнаем, как определять причины, формулировать убедительные доказательства зависимостей и использовать причины как руководство к действиям.
Что такое причина
Отвлекитесь на минутку и попытайтесь определить, что такое причина.
Если вы похожи на студентов моего курса по причинно-следственным связям, то, вероятно, уже придумали добрую половину формулировки до того, как уловили собственные возможные возражения. Скорее всего, в вашем определении встречаются оговорки вроде «чаще всего…», или «…но не в каждом случае», или «только если…». Однако в нем наверняка есть и некоторые определенные характеристики: например, причина вызывает следствие, делает следствие более вероятным, обладает способностью производить следствие, отвечает за наступление следствия. Это – общая идея о том, что было некое событие, которое что-то заставило случиться, чего в противном случае просто не произошло бы.
Хотя данное утверждение верно не для всех случаев, в моей книге термин «причина» в целом означает следующее: причина – это нечто, повышающее вероятность следствия, без чего следствие могло произойти, а могло и не произойти, и способное при должных обстоятельствах это следствие произвести.
Одно из самых ранних определений причины дал Аристотель: в его формулировке эта идея означала попытку ответить на вопрос «почему»[10]. Итак, если мы спрашиваем, почему случилось некое событие, кто-то должен объяснить, как это произошло (при нагревании воды выделяется пар), из чего состоит (водород и кислород, соединяясь, образуют воду), какую форму принимает (стул – это нечто для сидения, сделанное из природного материала и имеющее спинку) или для чего предназначено (задача вакцины – предотвратить болезнь).
И все же, отыскивая причины, мы чаще всего хотим знать, почему произошло одно событие, а не другое.
После Аристотеля наука о причинности прошла несколько промежуточных этапов (к примеру, об этом говорил в своих работах Фома Аквинский[11]), следующий крупный шаг был сделан во время научной революции конца эпохи Ренессанса. Этому периоду принадлежат такие ключевые фигуры, как Галилей, Ньютон, Локк, и немало прочих, однако именно труды Дэвида Юма[12] в XVIII столетии заложили фундаментальные основы современной научной мысли в области каузальности и методов отыскания причинных зависимостей[13]. Нельзя утверждать, что Юм был прав во всем (или что все согласны с его утверждениями либо хотя бы едины во мнении относительно его постулатов), однако именно он возвел вопрос о причинности в критические рамки.