Категории
Самые читаемые
onlinekniga.com » Научные и научно-популярные книги » Математика » Системы аэромеханического контроля критических состояний - Владимир Живетин

Системы аэромеханического контроля критических состояний - Владимир Живетин

Читать онлайн Системы аэромеханического контроля критических состояний - Владимир Живетин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 16
Перейти на страницу:

На этой основе представляется возможность организации новых специализаций по проблемам управления рисками в рамках первого, основного, диплома, а также второго диплома.

Приобрести книги серии «Риски и безопасность человеческой деятельности», а также получить более подробную информацию о каждой из них вы можете на официальном сайте Института проблем риска http://www.institutpr.com.

Введение

Поле аэродинамического давления, возникающее на поверхности летательного аппарата (ЛА) в процессе полета, подлежит контролю и управлению. Это необходимо в первую очередь для обеспечения безопасности полетов, снижения эксплуатационного риска, обусловленного возникновением критических ситуаций, таких как сваливание. Кроме того, в процессе контроля и управления полем аэродинамического давления осуществляются экономичные режимы полета, обеспечивается заданная точность выполнения боевых заданий. Пространственные режимы полета (маневры) создают нестандартные условия обтекания, контроль которых с целью идентификации области опасных или безопасных состояний с помощью существующих систем (приборов) невозможен.

Особую сложность представляют полеты на динамическом потолке [9], в турбулентной среде, имеющей резко разделенные, встречные и попутные потоки. Программы вывода из области критических состояний, а также предотвращения входа в критическую область являются сегодня актуальными. Наиболее реальный путь решения указанной проблемы связан с контролем, прогнозированием, анализом и управлением полем аэродинамических сил, базовой основой которого является поле аэродинамического давления на несущих поверхностях. Обеспечение безопасности полета реализуется путем ограничения некоторого набора параметров фазовой траектории. Этот набор параметров зависит от режима полета: стационарного, квазистационарного, динамического.

Все авиационное оборудование создано для стационарного режима полета. Исторически развитие авиационного оборудования неразрывно связано с эволюцией самолета. Начало этого процесса было положено тогда, когда ЛА мог рассматриваться как материальная точка. Для этих ЛА был характерен стационарный режим состояния поля сил аэродинамического давления, его структуры по поверхности ЛА.

В «классической» теории движения самолетов рассматриваются линеаризованные уравнения движения относительно центра масс. При этом, как правило, выделяются продольное и боковое движения и анализируется устойчивость движения «в малом» и, в некоторых случаях, переходные процессы при действии малых возмущений и при малых отклонениях рулей.

Однако рост скоростей и высот полета, послуживший причиной существенных изменений геометрических и инерционных характеристик, обусловил нелинейные зависимости при маневрах с кренами характеристик устойчивости и управляемости от параметров его движения. При этом теоретически и экспериментально были обнаружены такие режимы неустойчивости, которые при упрощенном (независимом продольном и боковом) анализе не определились. Эти особенности динамики маневренных самолетов связаны с наличием перекрестных связей между параметрами, характерными для продольного и бокового движений, что обусловило совместное рассмотрение уравнений, а также необходимость анализа нелинейных дифференциальных уравнений. Необходимость такого подхода была осмыслена после ряда авиационных катастроф американских истребителей (моделей Нард Америкэн «Супер Сейбр» F-100 и Белл Х-2).

Одним из возможных направлений применения поля сил аэродинамического давления является использование системы обратной связи по перепаду давления в системах автоматического управления полетом [20]. Почти на всех самолетах, оборудованных системами автоматического управления, положение рулей управления осуществляется через обратную связь по углу отклонения управляющего руля. Поскольку управляющая сила часто линейно зависит от положения руля, этот тип обратной связи работает хорошо. Однако во многих случаях необходимо вводить переменный коэффициент усиления обратной связи, соответствующий пространственному положению самолета в полете, динамическим изменениям давления, числу Маха или их комбинациям. Особенно это важно в нештатных режимах, в том числе для гражданской авиации. При этом отмечаются следующие возможности применения обратной связи по перепаду давления:

– управление углом атаки;

– парирование нагрузки от порыва ветра;

– предотвращение срыва потока на несущих поверхностях ЛА.

В работе [31] предлагается контролировать угол атаки на поверхности датчиками давления, расположенными приблизительно на расстоянии (10÷15)% хорды от ее начала. Перепад давления, как отмечает автор, здесь пропорционален углу атаки или углу скольжения на вертикальном оперении. Таким образом, выдерживание постоянного перепада давления будет эквивалентно выдерживанию постоянного угла атаки для данных полетных условий. При этом датчик перепада давления, расположенный на несущем крыле, будет контролировать (управлять) отклонение руля высоты.

Парирование порывов ветра в данной системе осуществляется не за счет сигналов отклонения от траектории, а за счет сигналов об изменении сил давления, когда еще нет отклонений ЛА. При этом датчики перепадов давления размещаются на крыле и хвостовом оперении на одном и том же расстоянии по хорде. В результате датчик на правом крыле будет контролировать положение правого элерона, в то время как датчик на левом крыле будет контролировать положение левого элерона. Элеронам будут предписываться отклонения независимо друг от друга, поэтому для того, чтобы компенсировать несимметричный порыв ветра, изменятся величина давления, результирующая подъемная сила и момент крена. Руль высоты и руль направления будут сохранять моменты тангажа и рыскания в равновесии.

Предупреждение срыва достигается применением датчиков перепада давления, подобным датчикам, рассмотренным для угла атаки α. Ограничивая перепад давления, мы воздействуем на α и предотвращаем срыв при любом весе самолета, а также срыв в динамическом режиме полета.

Следующим потребителем информации о поле аэродинамических сил является вертолет. Рассмотрим это направление на примере активной системы устранения срывного флаттера лопасти [31]. Предотвращение срыва потока, имеющего место на лопастях вертолета, является актуальной задачей. Это обусловлено требованиями маневренности и желанием эксплуатирующих организаций перевозить грузы максимально допустимого веса. В ходе исследований, начатых в 1970 году и осуществляемых в течение нескольких лет в рамках контрактов французского правительства, основной упор делается на активную систему устранения срывного флаттера лопастей [31]. В этих работах для активного управления срывом лопастей используется информация о поле сил аэродинамического давления для формирования сигнала управления углом тангажа таким образом, чтобы не происходил срыв потока. С этой целью строится следящая система для управления распределением давления на лопастях.

Как показывают эксперименты, комбинация срывного и вихревого противодействий, приводящая к внезапному повышению давления подсасывания на передней кромке, имеет место, когда лопасть находится в четвертом квадранте, т. е. при Ψ = 270°÷360°. При этом давление на передней кромке особенно чувствительно к срыву, следовательно подходит для распознавания условий, близких к срывным. Чтобы исследовать проблему количественно, предпочтительнее иметь дело с коэффициентом давления Cp, чем с абсолютным давлением. В таком подходе предотвращение срыва решается путем ограничения величины Cp. Когда величина Cpmax начала срыва известна, тогда ее можно использовать в качестве сигнала рассогласования для того, чтобы избежать отрыв потока на аэродинамической поверхности. При этом необходимо вводить цепь с обратной связью, в которой используется информация о величине Cp, а также силовой привод для обеспечения условия Cp < Cpmax.

Таким образом, использование информации о перепаде давления, измеренного в характерных точках на поверхности ЛА, является перспективным. Такая информация в измерительных системах используется давно [3, 8]. Однако в известных системах она применяется для измерения невозмущенного потока, в том числе с помощью приемников воздушного давления (давления торможения и статического давления), что не полностью характеризует состояние конкретного ЛА, а определяет лишь собственно движение его как материальной точки. Исследование таких систем проведено в монографии [30], в которых указывается на недостаточную точность функционирования таких измерительных систем при больших значениях углов атаки и скольжения, что приводит к нарушению адекватности между состоянием ЛА и его информационной моделью. Перспективные измерительные системы, как отмечено в работах [3, 8], должны включать в себя вычислители воздушных параметров, работающие с более высокой точностью.

1 2 3 4 5 6 7 8 9 10 ... 16
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Системы аэромеханического контроля критических состояний - Владимир Живетин.
Комментарии