Категории
Самые читаемые
onlinekniga.com » Научные и научно-популярные книги » Математика » ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р.

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р.

Читать онлайн ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р.

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 202 203 204 205 206 207 208 209 210 ... 233
Перейти на страницу:

Такие притянутые за уши соответствия каждый день встречаются в политических шаржах в газетах, государственные мужи изображаются в форме аэроплана, парохода, рыбы или Моны Лизы. Правительство становится человеком, птицей или нефтяной вышкой; договор — портфелем, мечом или банкой с червями… и так далее, и тому подобное. Интересно то, насколько легко мы можем проделать в уме предложенные отображения на нужную глубину, не находя слишком глубоких или слишком поверхностных соответствий.

Еще один пример запихивания одного предмета в форму другого — это мое решение описать создание «Крабьего канона» в терминах мейозиса. Это произошло постепенно. Сначала я заметил общий концептуальный скелет в «Крабьем каноне» и в образе хромосом, соединенных в середине центромерой; это послужило толчком к рождению форсированного соответствия. Затем я заметил сходство на высшем уровне, касающееся «роста», «стадий» и «рекомбинации». После этого я развил эту аналогию насколько смог. Экспериментирование, как в решении задач Бонгарда, сыграло важную роль; я шел вперед и снова возвращался, пока не натыкался на подходящее соответствие.

Третий пример концептуального отображения — схема Центральной Догмы Типогенетики. Сначала я заметил сходство на высшем уровне между открытиями математической логики и молекулярной биологии; затем я перенес поиски на низшие уровни, пока не нашел хорошей аналогии. Чтобы еще усилить эту аналогию, я выбрал нумерацию Гёделя, имитирующую Генетический Код. Этот элемент стоит особняком в форсированном соответствии, показанном на схеме Центральной Догмы.

Форсированные соответствия нелегко четко отделить от аналогий и метафор. Спортивные комментаторы часто используют живые образы, трудно поддающиеся классификации. Например, услышав метафору «Динамовцы забуксовали» трудно сообразить, что мы должны себе представить. Колеса у целой команды? У каждого игрока? Возможно, что ни то и не другое. Скорее всего, образ колес, крутящихся в грязи или на снегу, появляется у нас в голове всего на секунду и затем, таинственным образом, только нужные его части переносятся на образ футбольной команды. Насколько глубоко бывает в эту секунду соответствие образа автомобиля образу футбольный команды?

Повторение

Давайте попытаемся связать все это воедино. Я описал несколько идей, связанных с возникновением, манипуляцией и сравнением символов. Большинство из них так или иначе связаны с переходами между символами и их варьированием. Идея здесь в том, что в символах есть элементы жесткие и элементы более гибкие; все они происходят с разных уровней вложенных один в другой контекстов (фреймов). Свободные элементы могут быть легко заменены; в зависимости от обстоятельств, в результате такой замены может получиться «гипотетический повтор», форсированное соответствие или аналогия. Процесс, в котором одни части обоих символов варьируются, а другие остаюттся неизменными, может закончиться синтезом этих символов.

Творческие способности и случай

Понятно, что мы говорим здесь о механизмах творчества. Но не является ли это само по себе противоречием? Почти — но не совсем. Творчество — квинтэссенция того, что не механично. И тем не менее, каждый отдельный акт творчества механичен и может быть объяснен так же, как, например, икота. Этот механический субстрат творчества может быть скрыт он нашего взгляда, но он существует. И наоборот, даже на сегодняшний день в гибких компьютерных программах есть нечто немеханичное. Может быть, это еще не творческие способности, но в тот момент, когда программа перестает быть «прозрачной» для своих создателей, начинается приближение к творчеству.

Обычно считается, что случайность — это необходимый ингредиент творческих актов. Это может быть верным, но это никак не влияет на механичность — или, скорее, программируемость — творческих способностей. Мир — это огромная куча случайностей, и когда вы отражаете часть его в голове, то в вашем мозгу отражается и немного этой случайности. Поэтому схемы активации символов могут повести вас по самым причудливым, выбранным наугад дорогам просто потому, что они отражают ваше взаимодействие с непредсказуемым, сумасшедшим миром. То же самое может произойти и с программой компьютера. Случайность — это органическая черта мышления, а не то, что должно быть получено путем «искусственного оплодотворения», будь то игральные кости, распадающиеся ядра, таблицы случайных чисел или что-нибудь еще в этом роде. Не стоит оскорблять человеческие творческие способности, предполагая, что они базируются на подобных источниках!

То, что кажется нам случайным, часто представляет из себя эффект наблюдения над симметричной структурой через «кривой» фильтр. Изящный пример этого был изобретен Салвиати с его двумя способами описания числа π/4. Хотя десятичная дробь π/4 в действительности не является случайной, она достаточно случайна для практических нужд, можно сказать, что она «псевдослучайна». Математика полна псевдослучайностями — на всех творцов хватит! Так же, как наука полна «концептуальными революциями» на все уровнях и во все времена, индивидуальное мышление людей сплошь пронизано творческими актами. Мы находим их повсюду, а не только на высшем уровне. Большинство этих творческих актов весьма скромно и повторялось уже миллионы раз, но они- — двоюродные братья самого высокого и новаторского творчества. Компьютерные программы на сегодняшний день еще не совершают маленьких творческих актов; то, что они умеют делать, в основном механично. Это показывает, что они все еще далеки от удачной имитации нашего мышления — но постепенно они к этому приближаются.

Возможно, что высокотворческие идеи отличаются от обычных неким комбинированным чувством красоты, простоты и гармонии. По этому поводу у меня есть любимая «мета-аналогия», в которой я сравниваю аналогии с аккордами. Идея проста, схожие на вид мысли часто соотносятся между собой поверхностно, в то время как глубоко соотнесенные мысли на первый взгляд часто совсем несхожи. Сравнение с аккордами здесь естественно физически близко расположенные ноты гармонически отстоят друг от друга далеко (например, E-F-G [ми, фа, соль]), в то время, как гармонически близкие ноты физически далеки друг от друга (например. G-E-B [соль, ми, си]). Идеи, обладающие одним и тем же концептуальным скелетом, резонируют в некоей концептуальной гармонии; эти гармоничные «идеи-аккорды» часто отстоят весьма далеко друг от друга на воображаемой «клавиатуре идей». Разумеется, недостаточно просто взять интервал побольше — вы можете попасть на седьмую или девятую клавишу! Может быть, моя аналогия и есть такая «девятая клавиша,» отстоящая далеко, но тем не менее диссонантная.

Обнаружение повторяющихся структур на всех уровнях

В этой главе я остановился на задачах Бонгарда так подробно потому, что, когда вы их изучаете, вам становится ясно, что то трудно описуемое чувство схожих структур, которое мы, люди, получаем вместе с генами, содержит все механизмы представления знаний в мозгу. Это включает вложенные друг в друга контексты, концептуальные скелеты и концептуальное отображение; возможность перехода от одного понятия к другому; описания, мета-описания и их взаимодействие; расщепление и синтез символов; множественные представления (в различных «измерениях» и на различных уровнях абстракции); подразумеваемые элементы и тому подобное.

На сегодняшний день можно с уверенностью сказать, что если некая программа может замечать регулярности в одной области, она обязательно пропустит в другой области нечто, что нам, людям, кажется столь же очевидным. Если вы помните, я уже упоминал об этом в главе I, говоря, что машины могут не замечать повторяемости, в то время как люди на это не способны. Рассмотрим, например, ШРДЛУ. Если бы Эта Ойн печатала фразу «Возьми большой красный кубик и положи его на место» снова и снова; ШРДЛУ, не возражая, реагировала бы на это снова и снова, точно так же, как калькулятор может отвечать «4» снова и снова, если у человека хватит терпения печатать «2×2» снова и снова. Люди так не делают: если нечто повторяется снова и снова, они это обязательно заметят. ШРДЛУ не хватает потенциала для формирования новых понятий или узнавания схожих структур; у нее нет чувства повторяемости.

1 ... 202 203 204 205 206 207 208 209 210 ... 233
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р..
Комментарии