Вселенная. Руководство по эксплуатации - Дэйв Голдберг
Шрифт:
Интервал:
Закладка:
III. Зачем разным частицам так много разных правил?
Сейчас, когда мы установили несколько основных законов, общих для всех фундаментальных сил, настала пора поговорить об играх, начиная с самых простых и очевидных.
ГравитацияПросим заметить, что люди, само собой, звали о существовании гравитации задолго до того, как сэр Исаак Ньютон «открыл» ее в 1687 году. Например, к тому времени уже давным-давно умели строить катапульты. И прекрасно понимали, что если пустить стрелу вверх, то она впоследствии пробьет доспехи — хорошо бы на другой стороне поля. Без гравитации обслуживающему персоналу гильотины пришлось бы сидеть и дожидаться, когда же ее лезвие случайным образом упадет вниз.
Но Ньютон при помощи простого набора уравнений сумел с большой точностью предсказать падение яблока, орбиту Луны, пути планет. Закон, который он открыл, был прост — и описывал колоссальное множество явлений. Этот закон показывал, что все предметы во Вселенной притягивают друг друга, и чем дальше они друг от друга находятся, тем слабее это притяжение, или гравитация.
Ньютон, однако, разобрался в этой истории не до конца. Лишь в 1916 году Альберт Эйнштейн, разработав общую теорию относительности, объяснил нам, в чем сущность силы тяжести. Однако нам станет интересно, где ошибся Ньютон, только когда мы начнем говорить о машине времени (глава 5), Вселенной в целом (глава 6) и теории Большого взрыва (глава 7). Пока что будем считать, что он был полностью прав.
Мы уже говорили, что каждая из этих сил очень похожа на игру с мячиком и ракетками. Если бы нам предложили выбрать конкретный вид спорта, мы бы сказали, что гравитация похожа на бадминтон. В нее играют на большом поле (в масштабах всей Вселенной), а удары делают совсем слабенькие. Легко представить себе, как в вас попадают воланчиком, — и согласитесь, что по сравнению с ударами разными другими спортивными штуковинами. Такая травма надолго не запоминается.
Эта игра отлично подходит для начала спортивной карьеры, поскольку в нее могут играть не просто игроки любого возраста, а вообще кто угодно. Все частицы, и массивные, и наоборот, создают гравитационные поля и притягиваются друг к другу.
ЭлектромагнетизмВ отличие от гравитации, которая всегда привлекает и притягивает, электромагнетизм может и притягивать, и отталкивать. Вы уже знаете, что частицы несут один из трех видов электрического заряда: положительный, отрицательный или нейтральный. Если два электрона оказываются бок о бок, они всегда отталкивают друг друга. Пара, в которой одна частица заряжена положительно, а другая — отрицательно, например протон и электрон, всегда притягивается друг к другу. Если обе частицы нейтральны, они ничего не делают.
Два электрона притягивают друг друга силой гравитации, но при этом отталкивают друг друга силой электромагнитного взаимодействия. В нас силен дух нездорового соперничества, примерно как в очереди, поэтому мы сразу зададим вопрос, который наверняка так и вертится у всех на языке: какая сила сильнее — сила тяжести или электромагнитная?
Побеждает электромагнитная — и не по пенальти, а всухую. Электромагнитная сила отталкивания между двумя электронами более чем в 1040 раз сильнее, чем гравитационное притяжение, — вот почему мы вправе позволить себе пренебречь гравитацией, когда говорим о размерах порядка атома и меньше.
Наверное, вы заметили, что мы говорим об «электромагнитной» силе, но пока что затронули лишь ее «электрическую» часть. С точки зрения здравого смысла электричество и магнетизм — совсем разные вещи, но на фундаментальном уровне разница лишь в подходе. Неподвижные заряды создают электрическое поле, а подвижные — магнитное поле: вот как работает электромагнит, вот как мы понимали спины у заряженных частиц в главе 3. Подобным же образом изменение магнитного поля может создавать электрические поля — что, в свою очередь, создает электрический ток.
Поразительно, но факт: именно электромагнетизм объясняет практически все физические явления в повседневной жизни. Именно электрическое отталкивание не позволяет вашему седалищу продавить кресло. Именно электрическое притяжение скрепляет молекулы и служит основой для всех химических реакций. И — да, конечно, именно статическое электричество заставляет воздушный шарик прилипать к стенке.
А как же магнетизм? Если не считать магнитных нашлепок на холодильнике, в повседневной жизни мы с ним вроде бы и не сталкиваемся. Зато он играет крайне важную роль в ускорителях частиц. Когда заряженная частица (например, протон) находится в магнитном поле, она движется по круглой орбите. Чем сильнее магнитное поле, тем быстрее движение по орбите. Если поставить в кольцо БАК набор магнитов, то можно будет ловить протонный луч на скорости, близкой к скорости света.
Электромагнетизм — это как теннис. Эта игра гораздо динамичнее многих других, а маленькие пушистенькие желто-зеленые мячики (фотоны) ударяют с такой силой, что только держись. Нейтральные частицы в эту игру не берут, потому что фотоны их «не видят» и потому что они, как всегда, забыли ракетку у мамы дома.
Играть в электромагнетизм могут любые заряженные частицы.
Сильное взаимодействиеМы были вынуждены ознакомить вас с электромагнетизмом, поскольку существуют наблюдаемые феномены наподобие существования молекул и атомов, которые гравитацией не объяснишь. Однако гравитация и электромагнетизм, даже в сочетании, не в силах объяснить всего.
Рассмотрим гелий. Он состоит из двух нейтронов и двух протонов. Что касается электромагнетизма, нейтроны в этой игре не участвуют, а вот протоны крайне, крайне, крайне не любят общества друг друга. Только представьте себе — в ядре каждого атома гелия электрическая сила отталкивания между протонами составляет около 22,5 килограмма! Почему же гелий не разрывается в клочки под воздействием своего же электромагнитного отталкивания?
Значит, должна быть еще одна сила, которая действует и на протоны, и на нейтроны и заставляет их держаться вместе. Эта сила называется сильным, взаимодействием и действует лишь на очень-очень маленьких масштабах — около 10-15 метра. Чтобы вам не казалось, что мы жонглируем цифрами, и вы поняли, что это за масштаб, отметим, что размер атомного ядра по сравнению с вашим ростом — это все равно что ваш рост по сравнению с расстоянием до альфы Центавра.
Однако кроличья нора на поверку оказывается еще глубже. В 1960-х годах в ходе эксперимента по глубоко неупругому рассеянию в Стэнфордском линейном ускорителе ученые стреляли в атомы высокоэнергичными электронами. Получившийся рикошет показал, что внутри протонов и нейтронов есть что-то еще — протоны и нейтроны нельзя считать фундаментальными частицами, они состоят из чего-то еще более мелкого. Эти мелкие частички получили название кварков.
Кварки, как и электроны и нейтрино, — последние игроки в нашей метафизической игре. Существует шесть разновидностей кварков (их славные мордашки вы увидите в приложении к этой главе), а пока что нас интересуют только две: u-кварк (с электрическим зарядом в +2/3) и d-кварк (с электрическим зарядом в -1/3). В протонах содержится два u-кварка и d-кварк[67], а в нейтронах — два d-кварка и u-кварк[68].
Скрепляет их сильное взаимодействие. На самом деле сильное взаимодействие настолько сильно, что вне протонов и нейтронов кварки не встречаются.
Сильное взаимодействие очень похоже на пинг-понг. Это напряженный поединок в небольшом замкнутом пространстве. В игры с сильным взаимодействием играют только кварки (и протоны с нейтронами, которые состоят из кварков).
Слабое взаимодействиеКогда мы знакомили вас с сильным взаимодействием, то заявили, что нам приходится это делать, потому что существуют загадочные явления, которые невозможно объяснить при помощи двух других сил (гравитации и электромагнетизма). Об одном таком мы уже говорили — это распад нейтрона. Мы сказали, что нейтрон, предоставленный сам себе, распадается на протон, электрон — в антинейтрино. Попробуйте-ка объяснить это при помощи одной из сил, о которой мы уже говорили!
Придется нам изобрести (ладно, хорошо, гипотетически выдвинуть) еще одну силу. Задействовав все имеющиеся в нашем распоряжении творческие способности, мы титаническим усилием выдумываем слабое взаимодействие. Слабое взаимодействие характерно в основном для нейтрино, поскольку, раз они нейтральны, они уж точно не умеют играть в электромагнетизм, а в сильное взаимодействие играют только кварки. Как выяснилось, нейтрино и электроны очень похожи, за исключением небольших различий в заряде, и слабое взаимодействие, среди прочего, позволяет нейтрино превращаться в электроны и наоборот. Каждую секунду сквозь вас проходят триллионы нейтрино. Солнце производит их квадрильонами, и все же гигантские детекторы засекают лишь несколько нейтрино в день. Редкость — верный признак того, что слабое взаимодействие не зря получило такое название. А поскольку нейтрино взаимодействуют только посредством слабого взаимодействия, нам и не удается наблюдать их часто.