Категории
Самые читаемые
onlinekniga.com » Разная литература » Зарубежная образовательная литература » Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - Алексей Михайлович Семихатов

Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - Алексей Михайлович Семихатов

Читать онлайн Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - Алексей Михайлович Семихатов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 17 18 19 20 21 22 23 24 25 ... 202
Перейти на страницу:
ни греки, ни троянцы не сосредоточены все в одной точке, а занимают некоторый участок вдоль траектории Юпитера. Происходит все это довольно далеко от Земли (рис. 2.8), поэтому открыты они были совсем не сразу. Слово «троянцы» используют также в отношении астероидов, скапливающихся вблизи точек L4 и L5 других пар Солнце – планета; поскольку Солнце – это всегда Солнце, говорят просто о троянцах, например, Нептуна или Сатурна. Слово относится и к опережающим, и к отстающим; одного эпизода Троянской войны на Солнечную систему достаточно.*****

Полет из пращи. Путешествия к астероидам и планетам – это относительно далекие путешествия, оказывающиеся долгими при доступных нам скоростях. Разогнаться быстрее нелегко: топлива хватает только на что-то вроде TLI – единовременный разгон при старте с околоземной орбиты; хорошо, если потом остается еще немного на маневры. Дефицит топлива определяется трудностью его доставки к месту использования. Реактивная тяга основана на том, что, выбрасывая что-то «назад», реактивный аппарат движется «вперед»; здесь важна скорость, с которой некоторый «агент» выбрасывается назад (в подавляющем большинстве реально существующих реактивных двигателей это горячий газ). Реактивный аппарат несет с собой источник энергии для этого «выбрасывания» – в современных ракетах это горючее (например, керосин или метан) и окислитель. Их соединение обеспечивает горение, при котором и выделяется энергия. И вот здесь скрыт ключевой момент: необходимость с самого старта нести с собой все топливо (горючее и окислитель), в том числе и тот запас, который понадобится на более поздних этапах полета. Не только «полезную нагрузку», но и это топливо необходимо разогнать на более ранних этапах движения, а для этого разгона требуется дополнительное топливо, которое, в свою очередь, необходимо разогнать, для чего нужно еще сколько-то топлива, и так далее. Это удручающее положение дел математически выражается формулой Циолковского – соотношением, которое на основе законов движения Ньютона говорит, какой должна быть стартовая масса ракеты, чтобы разогнать желаемую «полезную» массу до заданной скорости, выбрасывая продукты горения с заданной скоростью относительно ракеты. Удручающим здесь является характер этой зависимости: увеличение конечной скорости достигается колоссальным увеличением массы ракеты – т. е. количества топлива – при старте.

Формула Циолковского не очень оптимистична

Но пока наши топливные возможности существенно ограничены, в дальнем путешествии можно заметно увеличить скорость, отобрав совсем ничтожную часть количества движения у встреченной по дороге планеты. Для этого действия иногда употребляют звучное название «гравитационная праща» (есть и более технический термин: «гравитационный маневр»). Это остроумный способ извлечения пользы – разгона или, когда это нужно, торможения – из совместной игры гравитации и движения[37]. Первым космическим аппаратом, исполнившим гравитационную пращу, была «Луна-3», полетевшая в космос в 1959 г. как «Автоматическая межпланетная станция». Она не только впервые выполнила этот маневр, но и впервые сфотографировала обратную сторону Луны, что вызвало колоссальный интерес и было огромным достижением, несмотря на никудышное по современным стандартам качество успешно присланных 17 (из 29 сделанных) фотографий. Пытаясь представить себе ощущение чуда от первого за всю историю человечества взгляда на то, чего увидеть «нельзя», я думаю, что качество фотографий было не самым главным в общественном восприятии этого события. (Первыми же людьми, посмотревшими на обратную сторону Луны своими глазами, был экипаж «Аполлона-8».) Луна направила станцию обратно к Земле, а из-за движения самой Луны при встрече изменилась плоскость орбиты станции: она повернулась примерно вокруг линии Земля – Луна, проведенной в момент облета Луны (рис. 2.9). «Луна-3» ушла от Луны таким образом, чтобы при возвращении к Земле пролететь над Северным полушарием и передать фотографии на станции связи на территории СССР (что оказалось непросто из-за слабости сигнала). Она вообще не имела маршевого двигателя, и весь этот полет требовалось рассчитать заранее (расчетами по Ньютону занималась команда под руководством Келдыша).

Рис. 2.9. «Луна-3», Земля и Луна. Гравитационный маневр

С тех пор гравитационный маневр применяли множество раз. «Вояджер-1», запущенный в 1977 г. (на 16 дней позже «Вояджера-2»), получил прибавку к скорости, позволяющую ему сейчас, когда вы это читаете, покидать пределы Солнечной системы с рекордной скоростью – около 61 000 км/ч, приобретенной в основном у Юпитера и Сатурна (рис. 2.10). В пересчете на космические масштабы это около 3,6 а.е./год. Без помощи планет «Вояджеры» не пролетели бы и полпути до своих положений на настоящий момент. 25 августа 2012 г. «Вояджер-1» стал первым искусственным аппаратом, вышедшим в межзвездное пространство, если проводить границу там, где попутный солнечный ветер наконец оказывается слабее встречного галактического ветра. Потребуются тем не менее еще сотни лет, чтобы он достиг расстояний, на которые уходят от Солнца наиболее далекие из идентифицированных тел Солнечной системы, такие как 2013 SY99, Лелеакухонуа (первоначально известная как Гоблин) и 2014 FE72.

Рис. 2.10. Большие планеты изменяют траектории «Вояджеров», ускоряя их при этом. Засечками показаны точки траектории, в которых «Вояджеры» и планеты находились в определенные даты каждый год

Главное действующее лицо в истории про гравитационную пращу – гипербола (см. главу «прогулка 1»). Представим себе, что космический аппарат – скажем, запущенный с Земли – подлетает к Юпитеру достаточно быстро, со скоростью, которая не позволит Юпитеру оставить этот аппарат в зоне своего притяжения. Если временно забыть про притяжение Солнца, а кроме того, смотреть на происходящее, сидя на Юпитере, то картина хорошо известна: космический корабль приходит издалека по ветви гиперболы, отклоняется и уходит прочь. Приходящая и уходящая ветви гиперболы симметричны, и даже скорость движения при прощании с Юпитером такая же по величине, как скорость при сближении с Юпитером на том же расстоянии от него. Но это если смотреть с Юпитера! А если смотреть с Солнца, то движется не только сам аппарат, но и Юпитер, и скорость их сближения – это результат несложного математического действия со скоростями каждого. В начале всего эпизода мы пересчитываем скорость аппарата относительно Солнца в скорость сближения с Юпитером. В конце эпизода мы выполняем обратное действие: скорость удаления от Юпитера пересчитываем в скорость аппарата относительно Солнца. Казалось бы, это два взаимно противоположных действия: сколько сначала добавили, столько потом и вычли? Нет! Суть дела в том, что корабль повернул вокруг планеты: его скорость изменила направление. Поэтому скорость Юпитера, учитываемая на входе, и она же, учитываемая на выходе, не сокращают

1 ... 17 18 19 20 21 22 23 24 25 ... 202
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - Алексей Михайлович Семихатов.
Комментарии