Информация как основа жизни - В. Корогодин
Шрифт:
Интервал:
Закладка:
Таким образом, использование тех или иных потенциальных носителей информации в качестве ее реальных носителей целиком и полностью обусловливается особенностями соответствующих информационных систем. Информационными, как договорились, будем и впредь называть системы, способные самостоятельно осуществлять полный информационный цикл, т. е. воспроизведение кодирующей их информации, а поэтому выступающие по отношению к такой информации как системы, обеспечивающие ее существование. Мы уже говорили, что воспроизведение информации обычно происходит путем самовоспроизведения всей системы. Каждое новое поколение информационной системы призвано воспринимать информацию, для этого подготовленную, сохранять ее до следующего акта воспроизведения, а затем передавать дальше. Эти три элементарных информационных акта являются необходимыми условиями существования любой информационной системы.
Мы помним, что информация сама по себе пассивна. Следовательно, каждый из этих информационных актов нуждается в физическом устройстве, обеспечивающем его осуществление. Помимо этого, каждая информационная система обладает устройством, осуществляющим реализацию информации – построение кодируемых ею таких же систем или их компонентов. Принцип работы реализующего устройства мы рассмотрим ниже, сейчас же отметим, что информация, предназначенная для реализации, может быть записана либо на таком же носителе, что и принимаемая, хранящаяся и передающаяся, либо на носителе какой-либо иной природы. Первый случай достаточно прост и в специальном рассмотрении не нуждается. Второй же случай предполагает существование устройств, осуществляющих перевод информации с одних носителей (систем записи) на другие, а именно на те, которые допускают ее реализацию. Осуществление такого перевода будем называть пониманием информации.
При обсуждении процесса передачи и понимания информации необходимо учесть следующие обстоятельства. Первое: принимающее устройство "поймет" только ту часть сообщения, которая будет адекватна его собственной семантике. Второе – передача информации всегда сопряжена с потерями информации за счет естественных необратимых помех во внешней среде. Для того, чтобы сохранить передаваемую информацию, необходимо увеличить запас информации принимающего устройства. Тогда в процессе записи новой информации часть запаса приемника может быть потеряна из-за диссипативных взаимодействий с внешней средой. Эти замечания накладывают ограничения на принимающие устройства: они должны обладать той же семантикой и большим запасом информации или быть на более высокой иерархической ступени эволюции.
Только существование устройств, осуществляющих перевод информации с одних систем записи на другие, позволяет использовать для передачи, хранения и реализации информации разные носители. Возникновение таких устройств в ходе развития информационных систем было настоящей революцией. Одним из следствий этого было появление носителей с чрезвычайно большой продолжительностью жизни, а затем использование подобных носителей для хранения информации, вне зависимости от особенностей создающих ее и использующих информационных систем. Так возникли "блоки памяти", или "банки данных", предназначенные для хранения информации, запасенной впрок. Другим следствием появления долгоживущих носителей было резкое расширение возможностей обмена информацией между информационными системами с разными способами ее фиксации. На базе того и другого и образовались технические системы связи, положившие начало "великому объединению" многочисленных разрозненных информационных систем в единую суперсистему, свидетелями чего мы и являемся.
Закономерности передачи информации по различным каналам связи достаточно подробно рассматривает классическая или шенноновская математическая теория связи [6], и мы здесь этого касаться не будем. Отметим лишь универсальность этих закономерностей для любых информационных систем. В основе таких закономерностей, помимо рассмотренных выше свойств информации, лежит также принцип линейной последовательности передачи и приема, а также записи информации. Если прибавить к этому еще и линейный принцип считывания информации в ходе ее реализации, то станет ясно, что принцип этот лежит в основе всех трансформаций, которым может подвергаться информация в ходе осуществления информационных процессов.
Таким образом, по особенностям приема, хранения и передачи информации все информационные системы можно подразделить на два класса. Информационными системами 1-го рода будем называть те, где для всех трех основных информационных актов, а также для реализации информации используются одни и те же системы записи или идентичные физические носители. Информационными системами 2-го рода будем называть те, где для осуществления разных информационных актов могут быть использованы и действительно используются разные носители. Переход от первых ко вторым был обусловлен возникновением устройств, обеспечивающих перевод информации с одних физических носителей на носители другой физической природы. Нетрудно видеть, что подразделение информационных систем по этому признаку полностью совпадает со сделанным выше подразделением по признаку "прочности связи" отдельных блоков автомата фон Неймана. Это совпадение, конечно, совершенно естественно.
Считывание и понимание информацииБудем различать считывание информации и ее понимание, восприятие или рецепцию некоторой информационной системой. "Считыванием" будем называть первый этап процессов, завершающихся либо переводом информации с носителей одной физической природы на носители другой физической природы, либо реализацией информации в оператор. "Пониманием", как мы уже говорили, будем называть перевод информации с какой-либо группы носителей на тот носитель (или систему записи), который делает ее пригодной для реализации. Таким образом, понимание информации предполагает возможность ее считывания, хотя само считывание далеко не всегда может сопровождаться ее пониманием. Очевидно, что понимание информации возможно только для информационных устройств 2-го рода, которые способны понимать информацию не только друг друга, но и ту, которая присуща информационным системам 1-го рода. Последние из-за отсутствия у них соответствующих устройств к пониманию чужеродной информации не способны.
Считывание информации может осуществляться двумя способами: когда считываемая информация сохраняется и, следовательно, может считываться неоднократно и когда информация в процессе ее считывания исчезает, разрушаясь буква за буквой или фраза за фразой. Как тот способ, так и другой могут быть использованы и при переводах, и при реализации информации. Очевидно, что реализация информации по второму способу предполагает наличие в этой же информационной системе одной или нескольких интактных копий этой информации, пригодных для введения в систему следующего поколения.
Очевидно, что возникновение устройства, пригодного для считывания информации в ходе ее реализации и являющегося необходимым компонентом любой информационной системы, должно было предшествовать возникновению устройства, пригодного для перевода информации с носителей одной природы на носители другой природы. Вероятнее всего, первое устройство явилось прототипом второго или даже прямым его предшественником, так как перевод любой информации можно, вообще говоря, трактовать как вырожденную ее реализацию.
Репликация информации: матричный принципМатричный принцип репликации информации, впервые описанный Н. К. Кольцовым [7], играет столь большую роль в размножении и динамике как самой информации, так и информационных систем, что на нем следует остановиться подробнее. Суть матричного принципа состоит в том, что сначала с носителя информации изготавливается как бы слепок или негатив, а затем по нему воспроизводится точная копия исходного носителя. Антитезой матричному принципу может служить только принцип гомологичной аттракции, который в природе, кажется, реализации не получил.
Матричный принцип и принцип гомологичной аттракции, по-видимому, исчерпывают логические возможности точного воспроизведения объектов, максимально компактным описанием которых могут служить они сами. Точность такого воспроизведения, однако, не может быть абсолютной – тривиальные термодинамические соображения показывают неизбежность ошибок, и речь может идти лишь об их количестве или частоте.
Как и при любых других способах воспроизведения "чего угодно", здесь возможны ошибки двух типов: ошибки, не влияющие на успешность воспроизведения, и ошибки, препятствующие ему. Первые можно назвать "наследуемыми", а вторые "летальными", ибо они прерывают цикл воспроизведения испытывающих их информации и тем самым обрекают эти информации на гибель. Если считать, что вероятность возникновения одной ошибки постоянна на одну букву сообщения, то, следовательно, вероятность ошибки на сообщение в целом будет возрастать с его длиной, т. е. с величиной емкости информационной тары, это сообщение содержащей. Если частота таких ошибок приближается к критическому значению, все большие преимущества будут получать наследуемые изменения, снижающие частоту этих ошибок или помогающие компенсировать их в случае возникновения, – способ репликации будет совершенствоваться в направлении повышения его точности при параллельном (или независимом) развитии систем, обеспечивающих исправление или репарацию информации от возникающих ошибок или повреждений.