Журнал «Вокруг Света» №7 за 2003 год - Вокруг Света
Шрифт:
Интервал:
Закладка:
Зима и лето снова вместе
Летом даже тайга совсем неплохо поглощает СО2 , чего никак не скажешь про территории России и Канады зимой. Пустыни Африки и Средней Азии в любое время года безжизненны, так же как и покрытые льдом горные массивы и полюса Земли. Территория США, несмотря на относительно теплый климат, даже летом мало радует буйной зеленью, а вот Южная Америка и Центральная Африка в летнее время активно покрываются новой растительностью.
Год за годом
Суша гораздо больше подвержена погодным колебаниям, чем океан. На картах хорошо видно, насколько активнее шел процесс фотосинтеза в 2001-м по сравнению с 2002 годом. Растительность Центральной Африки и Южной Америки поглотила за год от 2 до 3 кг углерода на каждый м2 поверхности, а это значит, что прирост биомассы составлял не менее 10 кг/м2 . Морские глубины, как и положено земному аккумулятору тепла, гораздо меньше подвержены сезонным и годичным колебаниям биопродуктивности, и свои 100—200 г/м2 /год углерода планктон поглощает независимо отпогоды.
Цветная шкала позволяет наглядно увидеть, какое количество углерода поглощается в процессе фотосинтеза зелеными растениями Земли (кг/м 2 /год).
Планетарий: Нейтронные оригиналы
Нейтронные звезды, которые часто называют «мертвыми», являются удивительнейшими объектами. Их изучение в последние десятилетия превратилось в одну из самых увлекательных и богатых открытиями областей астрофизики. Интерес к нейтронным звездам обусловлен не только загадочностью их строения, но и колоссальной плотностью, и сильнейшими магнитными и гравитационными полями. Материя там находится в особом состоянии, напоминающем огромное атомное ядро, и эти условия невозможно воспроизвести в земных лабораториях.
Рождение на кончике пераОткрытие в 1932 году новой элементарной частицы – нейтрона заставило астрофизиков задуматься над тем, какую роль он может играть в эволюции звезд. Два года спустя было высказано предположение о том, что взрывы сверхновых звезд связаны с превращением обычных звезд в нейтронные. Затем были выполнены расчеты структуры и параметров последних, и стало ясно, что если небольшие звезды (типа нашего Солнца) в конце своей эволюции превращаются в белых карликов, то более тяжелые становятся нейтронными. В августе 1967 года радиоастрономы при изучении мерцаний космических радиоисточников обнаружили странные сигналы – фиксировались очень короткие, длительностью около 50 миллисекунд, импульсы радиоизлучения, повторявшиеся через строго определенный интервал времени (порядка одной секунды). Это было совершенно не похоже на обычную хаотическую картину случайных нерегулярных колебаний радиоизлучения. После тщательной проверки всей аппаратуры пришла уверенность, что импульсы имеют внеземное происхождение. Астрономов трудно удивить объектами, излучающими с переменной интенсивностью, но в данном случае период был столь мал, а сигналы – столь регулярны, что ученые всерьез предположили, что они могут быть весточками от внеземных цивилизаций.
А потому первый пульсар получил название LGM-1 (от английского Little Green Men – «Маленькие Зеленые Человечки»), хотя попытки найти какой-либо смысл в принимаемых импульсах окончились безрезультатно. Вскоре были обнаружены еще 3 пульсирующих радиоисточника. Их период опять оказался много меньше характерных времен колебания и вращения всех известных астрономических объектов. Из-за импульсного характера излучения новые объекты стали называть пульсарами. Это открытие буквально всколыхнуло астрономию, и из многих радиообсерваторий начали поступать сообщения об обнаружении пульсаров. После открытия пульсара в Крабовидной Туманности, возникшей из-за взрыва сверхновой в 1054 году (эта звезда была видна днем, о чем упоминают в своих летописях китайцы, арабы и североамериканцы), стало ясно, что пульсары каким-то образом связаны с вспышками сверхновых звезд.
Скорее всего, сигналы шли от объекта, оставшегося после взрыва. Прошло немало времени, прежде чем астрофизики поняли, что пульсары – это и есть быстро вращающиеся нейтронные звезды, которые они так долго искали.
Физика пульсараПульсар – это просто огромный намагниченный волчок, крутящийся вокруг оси, не совпадающей с осью магнита. Если бы на него ничего не падало и он ничего не испускал, то его радиоизлучение имело бы частоту вращения и мы никогда бы его не услышали на Земле. Но дело в том, что данный волчок имеет колоссальную массу и высокую температуру поверхности, да и вращающееся магнитное поле создает огромное по напряженности электрическое поле, способное разгонять протоны и электроны почти до световых скоростей. Причем все эти заряженные частицы, носящиеся вокруг пульсара, зажаты в ловушке из его колоссального магнитного поля. И только в пределах небольшого телесного угла около магнитной оси они могут вырваться на волю (нейтронные звезды обладают самыми сильными магнитными полями во Вселенной, достигающими 1010—1014 гаусс, для сравнения: земное поле составляет 1 гаусс, солнечное – 10—50 гаусс). Именно эти потоки заряженных частиц и являются источником того радиоизлучения, по которому и были открыты пульсары, оказавшиеся в дальнейшем нейтронными звездами. Поскольку магнитная ось нейтронной звезды необязательно совпадает с осью ее вращения, то при вращении звезды поток радиоволн распространяется в космосе подобно лучу проблескового маяка – лишь на миг прорезая окружающую мглу.
Всесильная гравитацияСогласно современной теории эволюции массивные звезды заканчивают свою жизнь колоссальным взрывом, превращающим большую их часть в расширяющуюся газовую туманность. В итоге от гиганта, во много раз превышавшего размерами и массой наше Солнце, остается плотный горячий объект размером около 20 км, с тонкой атмосферой (из водорода и более тяжелых ионов) и гравитационным полем, в 100 млрд. раз превышающим земное. Его и назвали нейтронной звездой, полагая, что он состоит главным образом из нейтронов. Вещество нейтронной звезды – самая плотная форма материи (чайная ложка такого суперядра весит около миллиарда тонн). Очень короткий период излучаемых пульсарами сигналов был первым и самым главным аргументом в пользу того, что это и есть нейтронные звезды, обладающие огромным магнитным полем и вращающиеся с бешеной скоростью. Только плотные и компактные объекты (размером всего в несколько десятков километров) с мощным гравитационным полем могут выдерживать такую скорость вращения, не разлетаясь на куски из-за центробежных сил инерции.
Нейтронная звезда состоит из нейтронной жидкости с примесью протонов и электронов. «Ядерная жидкость», очень напоминающая вещество из атомных ядер, в 1014 раз плотнее обычной воды. Это огромное различие вполне объяснимо – ведь атомы состоят в основном из пустого пространства, в котором вокруг крошечного тяжелого ядра порхают легкие электроны. Ядро содержит почти всю массу, так как протоны и нейтроны в 2 000 раз тяжелее электронов. Экстремальные силы, возникающие при формировании нейтронной звезды, так сжимают атомы, что электроны, вдавленные в ядра, объединяются с протонами, образуя нейтроны. Таким образом рождается звезда, почти полностью состоящая из нейтронов. Сверхплотная ядерная жидкость, если ее принести на Землю, взорвалась бы, подобно ядерной бомбе, но в нейтронной звезде она устойчива благодаря огромному гравитационному давлению. Однако во внешних слоях нейтронной звезды (как, впрочем, и всех звезд) давление и температура падают, образуя твердую корку толщиной около километра. Как полагают, состоит она в основном из ядер железа.
Происхождение нейтронной звездыВспышка сверхновой звезды – это просто переход части гравитационной энергии в тепловую. Когда в старой звезде заканчивается топливо и термоядерная реакция уже не может разогреть ее недра до нужной температуры, происходит как бы обрушение – коллапс газового облака на его центр тяжести. Высвобождающаяся при этом энергия разбрасывает внешние слои звезды во все стороны, образуя расширяющуюся туманность. Если звезда маленькая, типа нашего Солнца, то происходит вспышка и образуется белый карлик. Если масса светила более чем в 10 раз превышает Солнечную, то такое обрушение приводит к вспышке сверхновой звезды и образуется обычная нейтронная звезда. Если же сверхновая вспыхивает на месте совсем большой звезды, с массой 20—40 Солнечных, и образуется нейтронная звезда с массой большей трех Солнц, то процесс гравитационного сжатия приобретает необратимый характер и образуется черная дыра.