Атомы и электроны - Бронштейн Матвей Петрович
Шрифт:
Интервал:
Закладка:
Другое, ещё более эффективное доказательство существования электронов внутри металла заключается в явлении «термоэлектронной эмиссии», которое открыл Томас Алва Эдисон, изобретатель фонографа[11] и электрической лампочки. Особенно подробно исследовал это явление (уже в первом десятилетии этого века) английский физик О. У. Ричардсон. Оно заключается в следующем: если сильно нагреть какой-либо металл, то из его поверхности начинают самопроизвольно выскакивать наружу отрицательно заряженные частицы. Определение e/m для этих частиц по способу Томсона показало, что это электроны. Число таких электронов, выскакивающих из металла наружу, очень быстро увеличивается с возрастанием температуры металла. Объясняется это явление вот как: среди электронов, находящихся в металле, попадаются и такие, которые имеют достаточно большую скорость для того, чтобы, подойдя изнутри к поверхности металла, пробить эту поверхность и выскочить наружу. Для того чтобы проскочить через поверхность металла, электроны должны затратить работу; это видно из того, что если бы такая работа была не нужна, то все электроны, пришедшие к поверхности, могли бы выскочить наружу, — в действительности же это под силу только электронам, у которых достаточно большой запас энергии движения, В этом смысле электроны, сидящие в металле, похожи на пойманных рыбок, мечущихся во все стороны в ведре с водой; только тем рыбкам, которые движутся достаточно быстро, удаётся выпрыгнуть наружу, прочие же не смогут подпрыгнуть так высоко, чтобы перемахнуть через край ведра. В случае электронов, находящихся в металле, число тех, которые движутся достаточно быстро для того, чтобы суметь выскочить из металла наружу, очень быстро увеличивается при возрастании температуры; при обычных температурах оно настолько мало, что никакого «термоэлектронного испускания» не происходит, но стоит только раскалить металл, как число выскакивающих из него электронов станет очень большим и «термоэлектронный ток» станет вполне доступен измерению. В некотором смысле это явление очень похоже на испарение жидкости: при повышении температуры число молекул, движущихся настолько быстро, что они смогут преодолеть притяжение остальных молекул и выскочить из жидкости в её пар, становится всё больше и больше, а поэтому нагретая жидкость испаряется быстрее, чем холодная. Явление «термоэлектронного испускания» может поэтому быть названо «испарением электронов». В настоящее время это явление имеет огромное множество технических применений (особенно в радиотехнике — стоит только вспомнить об электронных лампах), и с ним хорошо знаком каждый радиолюбитель.
* * *Всё вышеизложенное не оставляет никакого сомнения в правильности гениальной догадки Крукса о том, что электроны катодных лучей являются составной частью всех химических атомов. Но исследование катодных лучей привело не только к открытию электронов — этих предсказанных Франклином «атомов электрического флюида», — оно привело также и к другому весьма важному открытию, оказавшему огромное влияние на всё дальнейшее развитие физики. Речь идёт об открытии рентгеновских лучей.
В 90-х годах прошлого столетия очень многие физики изучали замечательные свойства катодных лучей. При этом делались интересные открытия. Так, например, немецкий физик Ленард открыл способ изучать катодные лучи вне разрядной трубки. Для этого он проделал в стеклянной стенке трубки «окошечко» для катодных лучей, т. е. отверстие, закрытое металлическим листиком, очень тоненьким, но всё же способным выдерживать атмосферное давление. Через это окошечко он выпустил из трубки катодные лучи наружу и сумел их изучать в воздухе. Заметим, что воздух оказывается не очень «прозрачным» для катодных лучей: пробежав в воздухе несколько сантиметров, электроны останавливаются, — очевидно, вследствие столкновений с атомами газов, из которых состоит воздух.
Ещё более — замечательное открытие суждено было сделать другому немецкому физику — мюнхенскому профессору Вильгельму Конраду Рентгену.
В ноябре 1895 года он совершенно случайно обнаружил, что, когда разрядная трубка, в которой от катода бегут катодные лучи, помещена в картонный футляр, экран, покрытый флюоресцирующим веществом, начинает ярко светиться при приближении к этой трубке. Отсюда Рентген заключил, что разрядная трубка испускает особые лучи, невидимые глазу, но свободно проходящие через футляр. Падая на экран, покрытый платиносинеродистым барием{3}, они заставляют его светиться. В первое мгновение Рентген был готов думать, что эти лучи света суть лучи Ленарда, т. е. вырвавшиеся наружу катодные лучи, но он должен был сейчас же отбросить это предположение, потому что лучи Ленарда очень плохо проходили даже через воздух — нескольких сантиметров воздуха было вполне достаточно для того, чтобы их задержать и поглотить, — а эти лучи, наоборот, обладали совершенно удивительной проникающей способностью: они свободно проходили через две сложенные вместе колоды карт, через еловую доску, через человеческую руку и т. д. Исследовав ближе это замечательное явление, Рентген обнаружил, что лучи испускаются той частью стеклянной стенки разрядной трубки, куда падают электроны катодных лучей. Под влиянием ударов со стороны падающих электронов стекло стенки начинает испускать (наряду со своим видимым зеленовато-жёлтым свечением, о котором мы уже упоминали в первой главе) также и особые, невидимые лучи, которые распространяются во все стороны и обладают удивительной способностью проникать на сравнительно большую глубину в тела, непрозрачные для видимого света. Такие лучи Рентген назвал «лучами икс», но это название, впрочем, не привилось, и в настоящее время на русском и на немецком языке открытые Рентгеном лучи называются попросту рентгеновскими лучами (англичане и французы продолжают называть их «лучами икс»).
Очень скоро Рентген обнаружил, что источником новых лучей может служить не только стекло разрядной трубки, но и всякое другое твёрдое тело, на которое падают достаточно быстрые электроны. Так как интенсивные и быстрые катодные лучи сильно разогревают всякое тело, на которое они падают, то лучше всего взять толстую металлическую пластинку из тугоплавкого металла, например вольфрама, и направить пучок катодных лучей на неё. Так возникла обычная форма «рентгеновской трубки», где против катода действительно располагается такая металлическая пластинка (антикатод), которая и служит источником рентгеновских лучей. (Заметим, что такой металлический антикатод вовсе не флюоресцирует, так что упомянутая в первой главе гипотеза Беккереля о том, что испускание рентгеновских лучей связано с флюоресценцией, не имеет под собой никакой почвы.) На антикатод может быть нанесён слой какого-либо иного вещества. Это важно потому, что, как мы увидим дальше, рентгеновские лучи, испускаемые различными веществами, различны по своим свойствам.
Наиболее замечательные особенности рентгеновских лучей (если не считать их удивительной проникающей способности) заключаются в следующем. Они не отклоняются ни в электрическом, ни в магнитном полях, откуда следует, что, в отличие от катодных лучей, они не несут на себе никакого электрического заряда. Падая на способный флюоресцировать экран, они заставляют его светиться. Фотографическую пластинку они чернят совершенно таким же образом, как это делают и видимые лучи света. Проходя через воздух, они делают воздух проводником электричества, так что заряженный электрометр, находящийся в таком воздухе, быстро разряжается (его заряд утекает через воздух) и его листочки спадают. (Таким же свойством, как мы знаем, обладают лучи Беккереля.)
Каков может быть физический смысл этого замечательного свойства рентгеновских лучей? Для того чтобы воздух стал проводником электричества, необходимо, чтобы в нём появились какие-то носители электрического заряда, способные передвигаться в электрическом поле. Отсюда следует, что рентгеновские лучи, проходя через воздух или через какой-нибудь другой газ, ионизуют этот газ, т. е. превращают часть его молекул в ионы, отрывая от них электроны. После этого в газе появляются положительные ионы наряду с оторвавшимися отрицательными электронами. Любое заряженное тело, находящееся в таком ионизованном воздухе, начнёт разряжаться, потому что оно оттолкнёт от себя те заряженные частицы, которые имеют заряд такого же знака, как и это тело, и притянет к себе частицы, заряженные электричеством противоположного знака; притянувшись к нему, эти частицы нейтрализуют (уравновесят, уничтожат) его заряд. Ясно, что чем интенсивнее рентгеновские лучи, тем сильнее вызванная ими ионизация воздуха и, следовательно, тем быстрее разряжаются в этом воздухе наэлектризованные тела.