Разумная жизнь во Вселенной - Юрий Мизун
Шрифт:
Интервал:
Закладка:
Не менее важны и металлы. Они являются катализаторами. Неметаллы также входят в живые организмы. Но они в основном заменимы (одни другими), кроме азота и фосфора.
Жизнь в активной форме возможна до тех пор, пока раствор (вода) остается в жидком состоянии. Это возможно в диапазоне температур от –20 до +100 °C. Правда, высшая температура (температура кипения) зависит от давления. Чем ниже давление, тем меньше эта предельная температура. При высоких температурах большинство органических соединений разлагается. Но при низких температурах границы для существования скрытой жизни практически нет. Из всего сказанного следует очень важный вывод: диапазон температур, в котором возможна жизнь, зависит от химического состава. В нашем земном варианте жизни при высоких температурах разрушается химическая основа цепочек и колец, которая состоит из связанных друг с другом углеродных атомов. Но жизнь в других местах Вселенной не обязательно основана на углеродных соединениях. Поэтому и роль температуры там может быть иной. Известно, что образовывать цепочки может не только углерод. Это могут делать и другие элементы, особенно элементы IV группы. Они характеризуются тем, что у них на внешней оболочке имеется четыре электрона. Это значит, что там остаются еще четыре вакансии. Поэтому и создается валентность или, чаще, ковалент-ность, которая равна четырем. Напомним, что ковалентность — это такая связь, когда электроны внешней оболочки распределяются между обоими атомами. При такой симметрии сцепление атомов между собой очень прочное.
У углерода ковалентная связь легче всего устанавливается с атомами водорода или же с другим углеродным атомом. Связь углерода с углеродом (С — С) очень стабильна. Ее прочность не уступает прочности связи углерода с другими элементами. Поэтому углерод и может образовывать крупные молекулы полимеров большого молекулярного веса, которые стабильны в своей основе настолько, что их устойчивость соответствует требованиям живых систем. Одновременно они достаточно нестабильны в боковых ответвлениях для того, чтобы они могли быстро реагировать на изменения условий (физических и химических) в окружающей среде. Можно сказать, что с одной стороны они прочные, а с другой стороны высокочувствительные. Такие молекулы непрерывно обновляются. Поэтому их называют лабильными. По сути именно лабильность составляет химическую сущность жизни.
Энергия высвобождается следующим образом. Когда разрушаются метастабильные молекулы, у которых велика теплота образования, значительное количество энергии высвобождается легко. Наиболее типичной молекулой этого класса является глюкоза (С6Н12О6). В органических реакциях, проходящих на земле, растворителем является вода. Если растворителем является не вода, то вся химия будет другой. У органических систем, которые основаны на другом растворителе, основной элемент молекулярных цепей также другой (не углерод). Для рассматриваемой нами проблемы это крайне важно.
Для земной жизни растворителем является вода. Это нейтральное вещество, которое в равной мере является кислотой и основанием. Это возможно потому, что она сама по себе может производить диссоциацию (разрыв молекулы). Можно сказать, что вода образует ионный раствор в самой себе. Ионами являются Н+ (протон) и НО— (гидроксил). Первый ион характеризует воду как кислоту, а второй — как основание. Ион Н+ обычно присоединяется к молекуле воды. При этом образуется гидроксоний Н3О+. Затем он вступает в реакцию и высвобождает ион Н—. Все указанные атомы и группы находятся в воде в состоянии динамического равновесия.
Попробуем воду заменить жидким аммиаком. В принципе он ведет себя подобным же образом. Так, он диссоциирует (разрывается) на ионы Н+ и NH2–. Затем ион Н+ соединяется с молекулой аммиака NH3 и образует аммоний NH4+.
Подобным образом ведут себя и другие растворители, которые сами способны создавать в себе ионы. Кислота — это вещество, которое путем прямой диссоциации или при взаимодействии с растворителем образует положительный ион, который характерен для данного растворителя. Для воды и аммиака это Н+. Основание — это вещество, которое дает аналогичным образом отрицательный ион. Для воды это НО, а для аммиака — NН2.
Когда кислота нейтрализуется основанием, положительный ион основания присоединяется к отрицательному иону кислоты (его называют остатком или радикалом), образуется соль. Одновременно отрицательный ион основания соединяется с положительным ионом кислоты. В результате образуется молекула растворителя. В том случае, когда электрический заряд иона является кратным, для его нейтрализации (уравновешивания) необходимо иметь столько же зарядов противоположного знака. Например, при реакции двуокиси углерода с аммиаком в воде образуется углекислый аммоний (NН4)СО3. Но для этой реакции присутствие воды обязательно. Без воды СО2 и NН3 не взаимодействуют (по терминологии химиков «не реагируют»).
В родительском растворителе частично диссоциирует и соль. Так, отдельные молекулы соли распадаются на ионы. В случае углекислого аммония такими ионами являются 2NH+4 и СО2 — 3. Это жидкость. Она обладает очень высокой электропроводностью, которая больше электропроводности чистого растворителя. Такая жидкость называется электролитом. Электролит должен (обязан) содержать в себе ионы. Если в жидкости нет ионов, она никогда не будет электролитом. В так называемом родительском растворителе ионные растворы дают кислоты, основания и соли, и только. Но в других растворителях ионные растворы могут вообще не давать ионов. Правда, они могут образовывать другие ионы.
Специалисты особо выделяют эффективные растворители из всех остальных. Эффективный растворитель должен растворять (эффективно!) большой ряд веществ. Для нас это вещества, которые могут создавать основу органических или псевдоорганических систем.
Растворы данного типа должны быть ионными. Это может реализоваться или вследствие способности растворителя разрушать полярные ковалентные связи растворенного вещества (так действует вода, когда притягивает местные избыточные заряды в молекуле Н3РО4), или вследствие химического сродства ионов растворителя и растворенного вещества.
Для того чтобы молекула растворителя могла разрывать полярные ковалентные связи, она сама должна иметь сильный нескомпенсированный электрический заряд на своих «полюсах». При этом она должна оставаться в целом нейтральной. Другими словами, она должна обладать дипольным моментом. Для того чтобы эти связи оставались разорванными, необходимо, чтобы растворитель был хорошим изолятором. В противном случае разноименные заряды устремятся навстречу друг другу, и диполя не станет. Это свойство характеризуется диэлектрической постоянной («ди» означает два, то есть плюс и минус). Чем больше сила взаимодействия двух электрических зарядов, которые находятся в жидкости на определенном расстоянии, тем меньше диэлектрическая постоянная. Электролитический растворитель еще характеризуют вязкостью. Такой раствор должен обладать хорошей текучестью (малой вязкостью). В противном случае ионы не смогут достаточно свободно перемещаться. В результате все реакции будут протекать медленно.
Хороший электролитический растворитель может быть или выравнивающим, или дифференцирующим (то есть делящим). Если растворитель выравнивающий, то в нем разные растворенные вещества создают электролиты примерно одинаковой силы. У них степени ионной диссоциации сравнимы. Такими являются высоко полярные растворители с большим дипольным моментом вода и аммиак. В дифференцирующем растворителе сила электролита сильно меняется в зависимости от растворенного вещества. То есть растворитель реагирует дифференцированно на разные вещества, он их различает, разделяет. Примером таких растворителей являются некоторые амины и галоидозамещенные углеводороды, такие как метиламин СН3NН2 и хлороформ СНСl3.
Кроме этого хороший биологический растворитель должен обладать высокой удельной теплоемкостью, а также большой скрытой теплотой превращения. Что касается удельной теплоемкости, то она представляет собой количество тепла в калориях, которое необходимо для нагревания определенной массы (один грамм) данного вещества на один градус Цельсия. Если удельная теплоемкость вещества высокая, то оно будет нагреваться и охлаждаться медленно. Благодаря этому свойству находящийся в таком веществе организм предохраняется от негативного влияния быстрого изменения температуры. То же самое справедливо и в том случае, если это вещество находится внутри организма.
Скрытая теплота перехода из одного состояния (или фазы) в другое равна количеству тепла, которое поглощено или выделено телом, когда оно переходит из одной фазы в другую без изменения температуры. Так, скрытая теплота парообразования у воды равна 539 кал/г при температуре кипения. У аммиака эта теплота равна 341 кал/г. Это при давлении в одну атмосферу. Для живых организмов все указанные выше величины вполне подходят. Имеется и еще один растворитель — сероводород Н2S. Его скрытая теплота при давлении в одну атмосферу равна всего 132 кал/г. Этого, конечно, мало. Ситуацию может исправить только высокое давление.