Категории
Самые читаемые
onlinekniga.com » Научные и научно-популярные книги » Физика » Звезды: их рождение, жизнь и смерть - Иосиф Шкловский

Звезды: их рождение, жизнь и смерть - Иосиф Шкловский

Читать онлайн Звезды: их рождение, жизнь и смерть - Иосиф Шкловский

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 19 20 21 22 23 24 25 26 27 ... 108
Перейти на страницу:

 

Рис. 5.1: Теоретическая зависимость радиуса протозвезды от времени.  

На рис. 5.1 схематически представлена зависимость радиуса протозвезды, первоначальная масса которой была равна массе Солнца, от времени. Для масштаба горизонтальные прерывистые линии соответствуют радиусам орбит планет Солнечной системы. Мы видим, что в начале «стадии свободного падения» сжимающейся под воздействием собственной гравитации протозвезды, еще недавно бывшей плотным, холодным «молекулярным» облаком, ее радиус близок к радиусу орбиты Плутона. При этом средняя концентрация частиц (преимущественно молекул водорода) была 1012 см-3. Стадия свободного падения (начатая от такой плотности) имеет длительность немногим больше 10 лет (см. формулу (3.7)). За это короткое время протозвезда сжимается до размеров орбиты Меркурия, т. е. примерно в сто раз. Конечно, этому этапу предшествовал существенно более длительный этап сжатия облака с первоначальной плотностью 105—106 см-3 до размеров орбиты Плутона. Далее, сжатие протозвезды резко замедляется, так как она становится непрозрачной к собственному излучению. Наступает «стадия Хаяши» в жизни охваченной конвекцией протозвезды. В самом начале этой стадии должна быть «вспышка» (см. выше). Через несколько десятков миллионов лет сжатие протозвезды почти прекращается и она «садится» на главную последовательность.

 

Рис. 5.2: Эволюционный трек протозвезды на диаграмме Герцшпрунга—Рессела.  

На рис. 5.2 изображен эволюционный «трек» протозвезды на диаграмме Герцшпрунга — Рессела. Стадия свободного падения протозвезды, когда она холодна и прозрачна, изображена (схематически, конечно) штриховой кривой в правой части рисунка. Максимум этой кривой соответствует наступлению непрозрачности и связан с первой вспышкой длинноволнового инфракрасного излучения. После наступления непрозрачности болометрическая светимость протозвезды быстро уменьшается, после чего следует очень быстрый ее рост, связанный с «закипанием» протозвезды из-за выхода наружу конвективных потоков и превращения их энергии в энергию излучения. Наступает вторая вспышка, на этот раз в ближней инфракрасной области. Заметим, что на этой кривой светимость протозвезды в максимуме вспышки в несколько раз меньше, чем по нашей грубой формуле (5.2), что, конечно, нас не должно смущать. Этому кратковременному этапу эволюции протозвезды соответствует широкая штрихованная полоса. Последняя (сплошная) часть эволюционного трека показывает непрерывное уменьшение светимости сжимающейся протозвезды, температура поверхности которой поддерживается на почти постоянном уровне («стадия Хаяши»). Наконец, трек протозвезды доходит до главной последовательности, что означает, что она превратилась в «нормальную» звезду. Следует подчеркнуть еще раз, что длительность отдельных «кусков» эволюционного трека совершенно различна.

Западногерманские астрофизики теоретически рассмотрели задачу о конденсации сферического газово-пылевого облака большой массы в звезду. Численные расчеты были проведены для значений масс 150, 50 и 20 M. Как показывают эти расчеты, в конечном итоге эволюции на главную последовательность приходят звезды с массами 36, 17 и 12 M соответственно, т. е. существенная часть первоначальной массы облака не конденсируется, а образует «протозвездные оболочки». Именно такие оболочки, эволюция которых рассчитывается, могут быть объектами исследования методами наблюдательной астрономии. Следовательно, открывается новый подход к основной проблеме звездной космогонии. Первоначальный радиус сжимавшихся облаков был принят 1018 см, причем облака считались невращающимися и лишенными магнитного поля, что, конечно, является значительным упрощением задачи. Тем не менее, результаты расчетов, как показывают наблюдения, довольно верно описывают различные стадии эволюции сжимающегося облака. Резюмируем эти результаты:

1. Спустя несколько сотен тысяч лет после начала сжатия облака и вскоре после того, как внутри сжимающегося облака образуется звездообразное, довольно горячее ядро, вокруг последнего возникает плотный, непрозрачный для оптических лучей газово-пылевой «кокон», внутренний радиус которого (3—5)1013 см, а внешний 1015 см. Температура наружных слоев «кокона» 500 К, и он, в принципе, мог бы наблюдаться как инфракрасный источник. Однако холодное вещество сжимающегося облака, находящееся снаружи от «кокона», непрозрачно к инфракрасным лучам. Наблюдатель никакого «кокона» внутри облака не увидит.

2. Мощное ( 1000L) инфракрасное излучение от «кокона» будет оказывать давление на газово-пылевую среду оболочки. По этой причине сжатие оболочки довольно быстро (через несколько десятков тысяч лет) остановит сжатие наружных слоев облака, которые после этого начнут расширяться. Таким образом, возникает наружная газово-пылевая оболочка или внешний «кокон», радиус которого 107 см. В дальнейшем как внутренний, так и внешний «коконы» расширяются. Начиная с некоторого момента, толщина внешнего «кокона» настолько уменьшается, что через него видно инфракрасное излучение более компактного и горячего внутреннего «кокона». Поэтому внешний наблюдатель «увидит» в инфракрасных лучах компактный «горячий» источник (T 500 К — 1000 К), окруженный более протяженным и холодным (T 200 К) источником. Именно такая ситуация и наблюдается в некоторых случаях (например, в Орионе, см. выше).

3. До сих пор ионизованный газ находился только в малой области внутри внутреннего «кокона». Связанный с этим газом поток теплового радиоизлучения очень мал и не может быть наблюдаем. Однако по мере расширения толщина внутреннего кокона становится настолько малой, что через него начнет проходить ионизующее ультрафиолетовое излучение протозвезды. Таким образом, всего лишь за несколько тысяч лет внутри внешнего «кокона» образуется очень компактная H II область, окруженная холодным неионизованным газом. На этой фазе наблюдатель будет видеть весьма компактную Н II область, окруженную более протяженным инфракрасным источником. Такая комбинация источников также довольно часто наблюдается.

4. Образовавшаяся таким образом компактная Н II область быстро расширяется и довольно скоро достигнет внутренней границы внешнего «кокона». Наблюдатель увидит Н II область и инфракрасный источник с одинаковыми размерами.

 

Рис. 5.3: Различные фазы сжатия протопланетного облака.

 

5. После того как весь наружный «кокон» станет ионизованным, образуется компактная H II область нового типа, масса которой остается постоянной, а яркость радиоизлучения быстро уменьшается (см. более подробно об этом в § 13). Ионизационный фронт будет распространяться через окружающую протозвездное облако разреженную среду, образуя при этом обычную протяженную Н II область. Среднее время жизни таких H II областей (т. е. среднее время жизни обычных облаков Н II) по оценке проф. Мецгера (Бонн, ФРГ), много сделавшего в области радиоастрономических исследований процесса звездообразования, составляет примерно 5 105 лет.

Набросанный сейчас «сценарий» образования звезд (см. рис. 5.3) позволяет сделать следующие, важные для наблюдательной астрономии выводы:

a. На самой ранней фазе «свободного падения» (для звезд класса О 105 лет) сжимающееся протозвездное облако не наблюдаемо.

b. В течение следующих 104 лет протозвезда может наблюдаться как инфракрасный источник. Никакой компактной области Н II при этом не наблюдается.

c. После того как протозвезда превратилась в звезду, т. е. «села» на главную последовательность, образуется расширяющаяся компактная H II область, окруженная внешним, сравнительно холодным «коконом». Эта фаза также длится около 104 лет.

d. Последняя фаза — следы компактной Н II области (уже «выевшей» внешний «кокон»), окруженной протяженной областью сравнительно малой яркости, длится до миллиона лет.

Хотя положенная в основу расчетов модель, как уже подчеркивалось выше, весьма схематична, основные черты эволюции протозвездных облаков и звезды она, по-видимому, отражает верно, что доказывается ее хорошим согласием с большим количеством наблюдений, выполненных в последнее время, в частности, под руководством Мецгера в Бонне. Следует также не забывать, что расчеты, результаты которых рассматривались выше, относятся к весьма массивным протозвездным облакам. Можно, однако, предполагать, что для менее массивных звезд доля массы протозвездного облака, не конденсировавшегося в звезду, будет мала. Поэтому внешний «кокон» может и не образоваться и инфракрасное излучение сравнительно горячего внутреннего «кокона» не будет «экранировано».

1 ... 19 20 21 22 23 24 25 26 27 ... 108
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Звезды: их рождение, жизнь и смерть - Иосиф Шкловский.
Комментарии