Категории
Самые читаемые
onlinekniga.com » Научные и научно-популярные книги » Биология » Рассказы о биоэнергетике - Владимир Скулачев

Рассказы о биоэнергетике - Владимир Скулачев

Читать онлайн Рассказы о биоэнергетике - Владимир Скулачев

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 20 21 22 23 24 25 26 27 28 ... 41
Перейти на страницу:

Тогда Митчел указал на другую возможность: не происходит ли в системе Викстрема окисление убихинола?

Викстрем возразил, что он обрабатывал митохондрии целым коктейлем ядов, которые должны были перекрыть все подходы к убихинолу. Чтобы окончательно отбросить возражение оппонента, Викстрем поставил опыты на цитохромоксидазных протеолипосомах, где убихинола вовсе не было. И вновь наблюдалось выделение ионов водорода. Правда, оно было меньше, чем в митохондриях, но уменьшение можно было легко объяснить разницей в размере митохондрий и протеолипосом (последние гораздо мельче).

- Что толку в объяснении? Эффект мал. Почему я должен в него верить? — высокомерно возразил Митчел.

Чтобы решить спор, я предложил Викстрему попытаться сделать большие протеолипосомы. Этот совет не вызвал у него энтузиазма.

- Большие протеолипосомы, конечно, лучше маленьких, но как их сделать большими?

Викстрему так и не удалось увеличить размер протеолипосом. Но совсем недавно эту проблему решил мелсиканец М. Монтал. Он приготовил цитохромоксидазные протеолипосомы диаметром в десять раз больше митохондрий. Теперь дело за Викстремом: если он прав, должно быть массированное выделение водородных ионов при окислении ферроцианида в протеолипосоодах-гигантах.

Ожесточенная дискуссия между Митчелом и Викстремом, не прекращающаяся и по сей день, последние несколько лет заметно оживляла обстановку на собраниях биоэнергетиков.

Совсем недавно наметилась неожиданная возможность почетного для обеих сторон разрешения затянувшегося спора. У одного из видов бактерий обнаружили необычную цитохромоксидазу, состоящую всего из двух белковых цепей (у митохондриального фермента их семь). По предварительным данным Г. Шаца из Швейцарии, эта «простая» цитохромоксидаза не закисляет среду при добавлении ферроцианида, хотя и образует протонный потенциал. Возможно, что этот фермент работает по Митчелу, а цитохромоксидаза митохондрий — но Викстрему. Можно предположить, например, что пять «лишних» белков митохондриальной цитохромоксидазы образуют протонные каналы, в то время как два белка, общих с ферментом из бактерии, отвечают за реакцию переноса электронов.

В этой связи надо указать на один момент, связанный с эффективностью цитохромоксидазного генератора. Схема Митчела при всей своей простоте страдает одним недостатком: КПД Митчеловой цитохромоксидазы менее 50 процентов. Механизм Викстрема сложнее, но зато почти вся энергия, выделяющаяся при окислительной реакции, используется для создания протонного потенциала.

Не исключено, что эволюция этой системы шла в направлении «от Митчела к Викстрему». Тогда бактерии с «простой» цитохромоксидазой используют примитивный (но, может быть, более устойчивый) механизм, а митохондрии — более сложную и совершенную систему.

Для окончательного решения этой проблемы необходимы детальные сведения об устройстве двух типов цитохромоксидаз.

Кое-что нам известно уже сегодня. Показано, что оба фермента содержат по два атома железа и по два атома меди, причем железо входит в состав тема, плоского органического макроцикла, подобного тому, что найден в гемоглобине крови. Именно атомы металлов участвуют в переносе электронов цитохромоксидазами. Для пяти из семи белков митохондриального фермента выяснена первичная структура, то есть последовательность аминокислот, составляющих белковую цепь. Для фермента из бактерий эта работа еще не начата.

Выяснена примерная топография фермента митохондрий (но не бактерий): показано, что некоторые из белков смотрят наружу митохондрий, другие внутрь, а третьи пронизывают мембрану насквозь. В целом цитохромоксидаза имеет вид буквы Y, причем «ножка» довольно сильно высунута из мембраны на внешней ее стороне, а кончики «рогов» чуть выдаются в воду с противоположной, внутренней стороны мембраны. К «ножке» лепится небольшой белок цитохром с.

Пространственная структура бактериального фермента неизвестна.

Ни для того, ни для другого фермента неясен путь электрона. Известно лишь, что электрон поставляется цитохромом с (Fe2+) на внешней поверхности мембраны. Затем он передается, как по эстафете, от одного атома железа или меди к другому вплоть до кислорода. Мы не знаем ни точной локализации атомов железа и меди в мембране, ни того места, где происходит восстановление кислорода. Загадкой остается и путь протонов, необходимых для образования воды при восстановлении кислорода.

Эта последняя проблема была исследована нашим сотрудником А. Константиновым. Он поставил ряд остроумных опытов, призванных ответить на' вопрос, изменяется ли характер взаимодействия цитохромоксидазы с протонами при появлении электрического поля на мембране митохондрий. Не вдаваясь в детали экспериментов, скажу лишь, что влияние поля было обнаружено. Оно оказалось таким, как если бы ионы Н+ транспортировались из внутреннего пространства митохондрий в толщу мембраны на некую глубину. По-видимому, именно там, в глубине мембраны, и происходит передача протонов на молекулу кислорода, получившую электроны от цитохромоксидазы.

Вот, пожалуй, и все то существенное, что можно сказать об устройстве цитохромоксидазного генератора. Как видно, ситуация здесь не многим отличается от той, в которой находятся исследования по АТФ-синтетазе: мы все еще далеки от создания точного чертежа этих загадочных преобразователей энергии.

Хлорофилльные генераторы

Цитохромоксидаза — пример фермента, генерирующего протонный потенциал за счет энергии, которая освобождается при окислительной реакции. Аналогичный механизм участвует также в преобразовании энергии при фотосинтезе.

Раньше под фотосинтезом понимали процесс образования сахара из углекислоты и воды с использованием энергии света. Однако развитие исследований в этой области за последние тридцать лет заставляет видоизменить такое определение фотосинтеза.

В начале 50-х годов было открыто фотофосфорилирование — синтез АТФ за счет энергии света в хлоропластах. Энергия АТФ у растений, как и у любых других живых организмов, может использоваться не только для синтеза углеводов, но также и для многих других целей.

Затем выяснилось, что усвоение света бактериями может протекать вообще без синтеза Сахаров, ограничиваясь образованием АТФ.

А в самое последнее время были описаны мутантные формы фотосинтезирующих бактерий, не образующих ни сахар, ни АТФ. В этом случае превращение энергии света обрывалось на стадии генерации протонного потенциала, который уже не мог использоваться для синтеза АТФ. Это не значит, однако, что протонный потенциал, а стало быть, и свет вовсе бесполезны для такой бактерии: они могли бы поддерживать транспорт веществ через мембрану, вращение жгутиков и другие потребляющие энергию протонного потенциала процессы.

Учитывая новейшие открытия биоэнергетиков, под фотосинтезом надо понимать не только синтез Сахаров, но также и любое другое использование энергии света для целей энергообеспечения живой клетки.

Универсальным биологическим преобразователем световой энергии служит фотогенератор протонного потенциала. Во всех известных сегодня случаях, кроме галофильных бактерий, фотогенератор улавливает свет молекулой пигмента хлорофилла (галофильные бактерии для этой цели используют ретиналь).

Хлорофилл — аналог тема, где вместо железа стоит атом магния. Хлорофилл всегда связан с особым мембранным белком. Хлорофилл-белковый комплекс составляет главный узел фотогенератора.

Более тридцати лет назад наш известный биохимик А. Красновский открыл важнейшее свойство хлорофилла — способность присоединять и отдавать электрон под действием света. Именно эти процессы, названные реакциями Красновского, как оказалось, лежат в основе работы белковых фотогенераторов, содержащих хлорофилл.

Рассмотрим одно из таких устройств — бактериальный хлорофилл-белковый комплекс. Это довольно сложный агрегат, состоящий из трех белковых цепей, четырех молекул хлорофилла, двух молекул феофитина (феофитин во всем подобен хлорофиллу, кроме одного — в нем нет магния). Сверх того, комплекс содержит убихинон, связанный с белком через атом железа.

Поглощение кванта света одной из молекул хлорофилла приводит к его немедленному окислению. При этом хлорофилл теряет один электрон, который присоединяется к другим компонентам комплекса: сначала к феофитину, находящемуся в непосредственной близости от хлорофилла, а затем к убихинону.

На этом завершается процесс разделения зарядов в комплексе: хлорофилл приобретает положительный заряд, возникший из-за потери электрона, в то время как убихинон, присоединивший этот электрон, заряжается отрицательно. Оба этапа процесса переноса электрона протекают чрезвычайно быстро: первый занимает менее 10-11 секунды, второй — порядка 10-10 секунды. Следующие этапы процесса — перенос электронов на свободный (не связанный с железом) убихинон и восстановление хлорофилла цитохромом с. На это уходит 10-55—10-3 секунды..

1 ... 20 21 22 23 24 25 26 27 28 ... 41
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Рассказы о биоэнергетике - Владимир Скулачев.
Комментарии