Категории
Самые читаемые
onlinekniga.com » Справочная литература » Справочники » Ответы на экзаменационные билеты по эконометрике - Ангелина Яковлева

Ответы на экзаменационные билеты по эконометрике - Ангелина Яковлева

Читать онлайн Ответы на экзаменационные билеты по эконометрике - Ангелина Яковлева

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 20 21 22 23 24 25 26 27 28 ... 47
Перейти на страницу:

yi=β0+β1xi,

точечный коэффициент эластичности определяется по формуле:

В знаменателе данного показателя стоит значение линейной функции в точке х1.

Для полиномиальной функции второго порядка (параболической функции) вида:

точечный коэффициент эластичности определяется по формуле:

В знаменателе данного показателя стоит значение параболической функции в точке х1.

Для показательной функции вида:

точечный коэффициент эластичности определяется по формуле:

Для степенной функции вида:

точечный коэффициент эластичности определяется по формуле:

Докажем данное утверждение.

Запишем точечный коэффициент эластичности для степенной функции вида

через первую производную результативной переменной по заданной факторной переменной x1:

Следовательно, Э(x1) = β1, что и требовалось доказать.

Чаще всего коэффициенты эластичности применяются в анализе производственных функций. Однако их расчёт не всегда имеет смысл, потому что в некоторых случаях интерпретация факторных переменных в процентном отношении невозможна или бессмысленна.

49. Производственные функции

Производственной функцией называется экономико-математическая модель, с помощью которой можно охарактеризовать зависимость результатов производственной деятельности предприятия, отрасли или национальной экономики в целом от повлиявших на эти результаты факторов.

Факторами производственной функции могут являться следующие переменные:

1) объём выпущенной продукции (в стоимостном или натуральном выражении);

2) объём основного капитала или основных фондов;

3) объём трудовых ресурсов или трудовых затрат (измеряемое количеством рабочих или количеством человеко-дней);

4) затраты электроэнергии;

5) количество станков, потребляемое в производстве и др.

Однофакторные производственные функции (т. е. функции с одной факторной переменной) относятся к наиболее простым производственным функциям. В данном случае результативной переменной является объём производства у, который зависит от единственной факторной переменной х. В качестве факторной переменной может выступать любая из вышеназванных переменных.

Основными разновидностями однофакторных производственных функций являются:

1) линейная однофакторная производственная функция вида:

y=β0+β1x,

например, производственная функция зависимости объёма производимой продукции от величины затрат определённого ресурса. Линейная однофакторная производственная функция характеризуется двумя особенностями:

а) если величина факторной переменной х равна нулю, то объём производства у не будет нулевым, потому что y=β0(β0›0);

б) объём произведённой продукции у неограниченно возрастает при увеличении затрат определённого фактора х на постоянную величину β1 (β1›0). Однако данное свойство линейной однофакторной производственной функции чаще всего справедливо только на практике;

2) параболическая однофакторная производственная функция вида:

при условиях β0›0, β1›0, β2›0.

Данная функция характеризуется тем, что при росте затрат ресурса х, объём произведённой продукции у вначале возрастает до некоторой максимальной величины, а затем снижается до нуля;

3) степенная однофакторная производственная функция вида:

при условиях β0›0, β1›0.

Данная функция характеризуется тем, что с ростом затрат ресурса х, объём производства у возрастает без ограничений;

4) показательная однофакторная производственная функция вида:

при условиях 0‹β1‹0.

Данная функция характеризуется тем, что с ростом затрат ресурса х объём произведённой продукции у также растёт, стремясь при этом к значению параметра β0.

5) гиперболическая однофакторная производственная функция вида: 

Данная функция практически не применяется при изучении зависимости объёма производства от затрат какого-либо ресурса, потому что нет необходимости в изучении ресурсов, увеличение которых приводит к уменьшению объёма производства.

Двухфакторные производственные функции (функции с двумя факторными переменными) характеризуют зависимость объёма производства от каких-либо двух факторов, чаще от факторов объёма основного капитала и трудовых ресурсов. Чаще всего используются такие двухфакторные производственные функции как функции Кобба-Дугласа и Солоу.

Для наглядного изображения двухфакторных производственных функций строят графики семейства кривых, основанных на различном сочетании двух факторов, но дающих в результате одно и то же значение объёма выпуска продукции. Кривые, построенные на основании равенства f(x1,x2)=const, называются изоквантами.

Изоквантой называется сочетание минимально необходимых ресурсных затрат для заданного уровня объёма производства.

Многофакторные производственные функции используются для изучения зависимости объёма производства от n-го количества факторов производства.

Общий вид многофакторной производственной функции:

y=f(xi),

где

50. Двухфакторная производственная функция Кобба-Дугласа

Теория производственных функций была разработана американскими учёными Д. Коббом и П. Дугласом, опубликовавшими в 1928 г. опубликовали работу «Теория производства».

Эти учёные предложили одну из наиболее известных разновидностей производственных функций, носящей название функции Кобба-Дугласа.

Общий вид функции Кобба-Дугласа:

где а – числовой параметр производственной функции;

xi – i-тый аргумент или i-ый фактор производственной функции;

ai – показатель степени i-го аргумента.

Наиболее часто применяется двухфакторная форма функции Кобба-Дугласа f(K,L):

Q=A*Ka*Lβ,

где Q – объём выпущенной продукции (в стоимостном или натуральном выражении);

K – объём основного капитала или основных фондов;

L – объём трудовых ресурсов или трудовых затрат (измеряемое количеством рабочих или количеством человеко-дней).

A,a,β – неизвестные числовые параметры производственной функции, которые подчиняются условиям:

1) 0≤а≤1;

2) 0≤β≤1;

3) A›0;

4) a+β=1.

На основании четвёртного условия a+β=1, функция Кобба-Дугласа может быть представлена в виде:

Q=A*Ka*L1-а.

Данная производственная функция позволяет объяснить уровень совокупного выпуска Q количествами затраченного капитала K и труда L основных факторов производства.

На двухфакторную функцию Кобба-Дугласа накладываются определённые ограничения, которые необходимо учитывать при спецификации модели:

1)

2)

3)

4)

5)

6)

Первое и второе ограничения означают, что объём выпускаемой продукции увеличивается при постоянном значении одного из факторов и росте другого фактора. Однако если один из факторов производства фиксирован, а другой фактор возрастает, то каждая дополнительная (предельная) единица возрастающего фактора менее полезна (с точки зрения прироста выпуска продукции), чем предыдущая единица.

Третье и четвёртное ограничения означают, что при фиксированном значении одного из факторов последовательное увеличение другого фактора будет приводить к сокращению прироста значения Q.

Пятое и шестое ограничения означают, что каждый из факторов производства необходим в том смысле, что если один из факторов равен нулю (K=0 или L=0), то и объём производства также равен нулю Q=0.

51. Показатели двухфакторной производственной функции Кобба-Дугласа

Двухфакторную производственную функцию Кобба-Дугласа f(K,L) можно представить в виде:

Q=A*Ka*Lβ,

где Q – объём выпущенной продукции (в стоимостном или натуральном выражении);

K – объём основного капитала или основных фондов;

L – объём трудовых ресурсов или трудовых затрат (измеряемое количеством рабочих или количеством человеко-дней).

1 ... 20 21 22 23 24 25 26 27 28 ... 47
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Ответы на экзаменационные билеты по эконометрике - Ангелина Яковлева.
Комментарии