Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы - Стивен Вайнберг
Шрифт:
Интервал:
Закладка:
Далее, как особо подчеркивал Эйнштейн в своих работах, тот факт, что сила тяготения, действующая на тело малых размеров, пропорциональна только массе этого тела и не зависит ни от каких других его свойств, выглядит в теории Ньютона достаточно произвольным. В рамках этой теории гравитационная сила могла бы зависеть от размеров, формы или химического состава тела, и это не привело бы к потрясению основ. В теории Эйнштейна сила тяготения, действующая на тело, обязана быть пропорциональной массе тела и не зависеть от любых иных его свойств19); если бы это было не так, силы тяготения и силы инерции по-разному действовали бы на разные тела и было бы невозможно говорить о свободно падающей системе отсчета, в которой ни одно тело не испытывает действия сил тяготения. Это, в свою очередь, не позволило бы интерпретировать тяготение как геометрический эффект кривизны пространства-времени. Еще раз повторим, что теория Эйнштейна обладает значительно большей жесткостью, чем теория Ньютона. Именно по этой причине Эйнштейн имел право полагать, что именно ему удалось объяснить обычные движения тел в Солнечной системе так, как не мог этого сделать Ньютон.
К сожалению, очень трудно точно сформулировать понятие жесткости физической теории. И Ньютон, и Эйнштейн знали общие свойства движения планет до того, как они сформулировали свои теории; более того, Эйнштейн знал, что он должен получить для силы тяготения что-то похожее на закон обратных квадратов, с тем, чтобы его теория воспроизводила успехи теории Ньютона. Наконец, он знал, что нужно как-то разобраться с зависимостью гравитационной силы от массы. Лишь рассматривая всю окончательно завершенную теорию в целом, можно сказать, что ОТО объяснила закон обратных квадратов или пропорциональность гравитационной силы массе тела, но все равно это суждение остается делом вкуса и интуиции. Ведь оно на самом деле сводится к утверждению, что, если изменить теорию Эйнштейна так, чтобы допустить иной закон вместо закона обратных квадратов или допустить непропорциональность силы тяготения массе тела, то теория станет невыносимо безобразной. Итак, высказывая суждения о значении тех или иных данных, мы снова используем эстетические оценки и наше общее теоретическое наследие.
* * *Мой следующий рассказ посвящен квантовой электродинамике – квантово-механической теории взаимодействия электронов и света. В определенном смысле это зеркальное отражение предыдущего рассказа. В течение сорока лет общая теория относительности рассматривалась как правильная теория тяготения, несмотря на скудость свидетельств в ее пользу, и происходило это потому, что теория была неотразимо прекрасна. В противоположность этому квантовая электродинамика сразу же нашла подтверждение в огромном количестве экспериментальных данных, но несмотря на это двадцать лет к ней относились с большим недоверием из-за внутренних теоретических противоречий, которые, казалось, могли быть разрешены только очень некрасивым образом.
В 1926 г. в одной из первых работ по квантовой механике, так называемой «работе троих» (Dreimännerarbeit), авторами которой были Макс Борн, Вернер Гейзенберг и Паскуаль Йордан, эта теория была применена для описания электрического и магнитного полей. Удалось показать, что энергия и импульс электрического и магнитного полей в луче света распространяются сгустками[81], ведущими себя как частицы, и подтвердить, таким образом, справедливость идеи Эйнштейна, высказанной им в 1905 г., о частицах света – фотонах. Другой главной составной частью квантовой электродинамики стала созданная в 1928 г. теория Поля Дирака. В первоначальной форме эта теория показала, каким образом совместить квантовомеханическое описание электронов на языке волновых функций с требованиями специальной теории относительности. Одним из важнейших следствий теории Дирака было то, что для каждого сорта заряженных частиц вроде электрона должна существовать частица той же массы, но с противоположным по знаку зарядом, – так называемая античастица. Античастица к электрону была открыта в 1932 г. и называется позитроном. В конце 20-х – начале 30-х гг. квантовая электродинамика была использована для расчета множества физических процессов (например, рассеяние фотона при столкновении с электроном, рассеяние одного электрона другим, аннигиляция или рождение электрона и позитрона), причем результаты расчетов в целом находились в прекрасном согласии с экспериментом.
Тем не менее к середине 1930-х гг. возобладала точка зрения, что квантовую электродинамику можно рассматривать всерьез только как некоторое приближение, справедливое лишь для реакций с участием фотонов, электронов и позитронов достаточно малых энергий. Трудность, с которой столкнулись ученые, была непохожа на обычные трудности, о которых рассказывают в популярных трудах по истории науки, когда возникают противоречия между теоретическими предсказаниями и экспериментальными данными. В данном случае существенное противоречие возникло внутри самой физической теории. Это была проблема бесконечностей.
Существование этой проблемы в разных формах отмечалось Гейзенбергом и Паули, а также шведским физиком Айваром Валлером, но наиболее ясно и тревожно она прозвучала в 1930 г. в работе молодого американского физика-теоретика Роберта Юлиуса Оппенгеймера. В этой работе Оппенгеймер попытался использовать квантовую электродинамику для расчета одного тонкого эффекта, связанного с энергиями атомов. Электрон в атоме способен испустить квант света, фотон, затем некоторое время покрутиться по орбите и вновь поглотить этот фотон (похоже на игрока в американский футбол, который подхватывает мяч, брошенный им самим же). Фотон никогда не покидает пределы атома, и мы можем судить о его существовании только косвенно, по тому влиянию, которое он оказывает на такие свойства атома, как его энергия или создаваемое им магнитное поле. (Такие фотоны называются виртуальными.) Согласно правилам квантовой электродинамики, этот процесс приводит к сдвигу энергии атомного состояния, причем величина его может быть представлена в виде суммы бесконечного числа вкладов[82], каждый из которых соответствует каждому возможному значению энергии виртуального фотона, которая ничем не ограничена. Оппенгеймер обнаружил при вычислении, что так как в сумму дают вклад слагаемые, отвечающие фотонам неограниченно большой энергии, то и сама сумма оказывается бесконечной, что в результате приводит к бесконечно большому сдвигу энергии атома20). Высокие энергии соответствуют малым длинам волн; так как ультрафиолетовый свет имеет меньшую длину волны, чем видимый, возникновение такой бесконечности назвали ультрафиолетовой катастрофой.
В 30-е и в начале 40-х гг. большинство физиков сходилось во мнении, что появление ультрафиолетовой катастрофы в расчетах Оппенгеймера и других просто свидетельствует о том, что нельзя доверять существующей теории фотонов и электронов, если энергия этих частиц превышает несколько миллионов электрон-вольт. Сам Оппенгеймер горячо отстаивал такую точку зрения. Отчасти это было связано с тем, что Оппенгеймер был одним из лидеров в изучении космических лучей, высокоэнергетечиских частиц, проникающих в атмосферу Земли из космоса. Исследование того, как частицы космического излучения взаимодействуют с атмосферой, указывало на странное поведение частиц высокой энергии. Действительно, странности были, но они не имели никакого отношения к проблемам применимости квантовой теории электронов и фотонов, на самом деле необычные явления были свидетельствами рождения частиц нового типа, которые мы сейчас называем мюонами. Но даже после того, как в 1937 г. мюоны были открыты, все равно считалось, что при попытке применить квантовую электродинамику к электронам и фотонам больших энергий происходит что-то не то.
Проблему бесконечностей можно было бы решить с помощью грубой силы, просто постановив, что электроны могут испускать и поглощать только фотоны, энергия которых ниже некоторого граничного значения. Все успехи, достигнутые в 1930-е гг. квантовой электродинамикой в объяснении взаимодействий электронов и фотонов, относились к процессам с участием фотонов низких энергий, так что эти успехи могли быть сохранены, если предположить, что граничное значение энергий фотонов достаточно велико, например 10 миллионов электрон-вольт. При таком выборе предела энергии виртуальных фотонов квантовая электродинамика предсказывала бы очень маленькие сдвиги энергии атомов. В то время никто еще не мог измерить энергии атомов с необходимой точностью, чтобы проверить, существуют или нет эти крохотные сдвиги энергии, так что вопрос о расхождениях с опытом не возникал. (На самом деле отношение к квантовой электродинамике было столь пессимистичным, что никто и не пытался вычислить величину этих сдвигов.) Беспокойство в связи с подобным решением проблемы бесконечностей возникало не из-за конфликта с опытом, а из-за того, что предлагаемый выход из положения был слишком произволен и слишком уродлив.