Большая Советская Энциклопедия (СП) - БСЭ БСЭ
Шрифт:
Интервал:
Закладка:
Энергии электронных переходов между локальными уровнями дефектных центров попадают обычно в область прозрачности идеального кристалла, благодаря чему они часто обусловливают окраску кристалла. Например, в щёлочно-галоидных кристаллах возбуждение электрона, локализованного в анионной вакансии (F-центр окраски), приводит к характеристической окраске кристалла. Различные примесные ионы (например, Тl в КСl) образуют центры люминесценции в кристаллофосфорах. Они дают электронно-колебательные (вибронные) спектры. Если электрон-фононное (вибронное) взаимодействие в дефектном центре слабое, то в спектре появляется интенсивная узкая бесфононная линия (оптический аналог линии Мёссбауэра эффекта), к которой примыкает «фононное крыло» со структурой, отражающей особенности динамики кристалла с примесью (рис. 3). С ростом вибронного взаимодействия интенсивность бесфононной линии падает. Сильная вибронная связь приводит к широким бесструктурным полосам. Поскольку часть энергии возбуждения в процессе колебательной релаксации до излучения рассеивается в остальном кристалле, максимум полосы люминесценции лежит по длинноволновую сторону от полосы поглощения (правило Стокса). Иногда к моменту испускания светового кванта в центре не успевает установиться равновесное распределение по колебательным подуровням, при этом возможна «горячая» люминесценция.
Если кристалл содержит в качестве примесей атомы или ионы переходных или редкоземельных элементов, с недостроенными f- или d-оболочками, то можно наблюдать дискретные спектральные линии, соответствующие переходам между подуровнями, возникающими в результате расщепления атомных уровней внутрикристаллическим электрическим полем (см. Кристаллическое поле, Квантовый усилитель).
Лит. см. при ст. Спектроскопия кристаллов.
Н. Н. Кристофель.
Спектры оптические. Спектр угольной дуги (полосы молекул CN и C2).
Рис. 3. Бесфононная линия и фононное крыло в спектре поглощения примесной молекулы NO2- в KI при температуре жидкого гелия.
Рис. 2. Длинноволновый участок собственного поглощения кристалла КВr при температуре жидкого азота. Первые два интенсивных пика со стороны низких энергий соответствуют экситонам. Область собственного поглощения начинается за вторым пиком.
Спектры оптические. Спектр испускания паров молекулы йода.
Рис. 1. Спектр комбинационного рассеяния кристалла дигидрофосфата калия (KDP) при разных температурах. По оси абсцисс отложено отношение сдвига частоты (n - no) к скорости света.
Спектры оптические. Спектр меди.
Спектры оптические. Сплошной спектр.
Спектры оптические. Спектр натрия.
Спектры оптические. Спектр атомарного водорода.
Спектры оптические. Линии поглощения (фраунгоферовы линии) в спектре Солнца.
Спектры оптические
Спе'ктры опти'ческие, спектры электромагнитного излучения в инфракрасном, видимом и ультрафиолетовом диапазонах шкалы электромагнитных волн. С. о. разделяют на спектры испускания (называемые также спектрами излучения, или эмиссионными спектрами), спектры поглощения, рассеяния и отражения. С. о. испускания получаются от источников света разложением их излучения по длинам волн l спектральными приборами и характеризуются функцией f(l), дающей распределение энергии испускаемого света в зависимости от l. С. о. поглощения (абсорбции), рассеяния и отражения обычно получаются при прохождении света через вещество с последующим его разложением по l. Эти типы С. о. характеризуются долей энергии света каждой длины волны соответственно поглощённой [k(l)], рассеянной [a(l)] и отражённой [R(l)]. При рассеянии монохроматического света длины волны lо спектр комбинационного рассеяния света характеризуется распределением энергии рассеянного света по измененным длинам волн l ¹ lо[f’(l)]. Т. о., любой спектр характеризуется некоторой функцией f(l), дающей распределение энергии (абсолютной или относительной) по длинам волн; при этом энергию рассчитывают на некоторый интервал l. От функции f(l) можно перейти к функции j(n), дающей распределение энергии по частотам n = с/ l (с — скорость света); тогда энергия рассчитывается на единицу интервала n.
С. о. регистрируют с помощью фотографических и фотоэлектрических методов, применяют также счётчики фотонов для ультрафиолетовой области, термоэлементы и болометры в инфракрасной области и т. д. В видимой области С. о. можно наблюдать визуально.
По виду С. о. разделяют на линейчатые, состоящие из отдельных спектральных линий, соответствующих дискретным значениям l, полосатые, состоящие из отдельных полос, каждая из которых охватывает некоторый интервал l, и сплошные (непрерывные), охватывающие большой диапазон l. Строго говоря, отдельная спектральная линия также не соответствует вполне определённому значению l, а всегда имеет конечную ширину, характеризуемую узким интервалом l (см. Ширина спектральных линий).
Диапазон l, мкм n, сек-1' n/с, см-1 hn, эв Т, К Инфракрасное излучение 103—0,74 3,0×10"—4,0×1014 10—1,35×104 1,25×10-3—1,7 14—2,0×104 Видимое излучение 0,74—0,40 4×1014—7,5×1014 1,35×104—2,5×104 1,7—3,1 2,0×104—3,6×104 Ультрафиолетовое излучение 0,40—0,001 7,5×1014—3,0×10'° 2,5×104—106 3,1—125 3,6×104—1,4×106С. о. возникают при квантовых переходах между уровнями энергии атомов, молекул, а также твёрдых и жидких тел. С. о. испускания соответствуют возможным квантовым переходам с верхних уровней энергии на нижние, спектры поглощения — с нижних уровней энергии на верхние.
Вид С. о. зависит от состояния вещества. Если при заданной температуре вещество находится в состоянии термодинамического равновесия с излучением (см. Тепловое излучение), оно испускает сплошной спектр, распределение энергии в котором по l (или n) даётся Планка законом излучения. Обычно термодинамическое равновесие вещества с излучением отсутствует и С. о. могут иметь самый различный вид. В частности, для спектров атомов характерны линейчатые спектры, возникающие при квантовых переходах между электронными уровнями энергии (см. Атомные спектры), для простейших молекул типичны полосатые спектры, возникающие при переходах между электронными, колебательными и вращательными уровнями энергии (см. Молекулярные спектры).
Для С. о. различным диапазонам l и, следовательно, n соответствуют различные энергии фотонов hn = Е1—Е2 (где h — Планка постоянная, Е1 и Е2 — энергии уровней, между которыми происходит переход). В табл. приведены для 3 диапазонов электромагнитных волн примерные интервалы длин волн l, частот n, волновых чисел n/c, энергий фотонов hn, а также температур Т, характеризующих энергию фотонов согласно соотношению kT = hn (k — Больцмана постоянная).
С. о. широко применяются для исследования строения и состава вещества (см. Спектроскопия, Спектральный анализ).
Лит.: Ландсберг Г. С., Оптика, 4 изд., М., 1957. (Общий курс физики, ч. 3); Фриш С. Э., Оптические спектры атомов, М. — Л., 1963.
М. А. Ельяшевич.
Спектры поглощения
Спе'ктры поглоще'ния, спектры оптические и рентгеновские спектры, получаемые при пропускании через вещество и поглощении в нём соответствующего излучения.
Спекулятивное
Спекуляти'вное (позднелатинское speculativus, от лат. speculor — наблюдаю, созерцаю), тип теоретического знания, которое выводится без обращения к опыту, при помощи рефлексии, и направлено на осмысление предельных оснований науки и культуры. С. знание представляет собой исторически определенный способ обоснования и построения философии. Идея о С. характере философии служила формой утверждения суверенности философского знания и его несводимости к специально-научному знанию. Представление о философии как С. знании сложилось уже в античности; наиболее последовательная система С. знания была развита Г. Гегелем, который усматривал в диалектике высшую форму теоретического умозрения истины; завершением многовековой традиции С. философии явилась феноменология Э. Гуссерля.