Мозг и душа: как нервная деятельность формирует наш внутренний мир - Крис Фрит
Шрифт:
Интервал:
Закладка:
Когда априорные знания нашего мозга неверны, наше восприятие оказывается обманчивым. Современные технологии позволяют создавать множество новых изображений, правильно интерпретировать которые наш мозг не способен. Такие изображения мы неизбежно воспринимаем неправильно.
К объектам, которые мы почти не в состоянии воспринимать правильно, относится вогнутая внутренняя поверхность маски, повторяющая форму лица. Когда мы смотрим на маску изнутри (фото внизу справа на рис. 5.8), мы невольно видим в ней подобие нормального выпуклого лица. Априорное убеждение, что лица выпуклы, а не вогнуты, оказывается слишком сильным, чтобы наш мозг мог его поменять. Если маска при этом медленно вращается, создается еще одна иллюзия. Так как вогнутая поверхность маски выглядит выпуклой, кончик носа кажется ближайшей к нам точкой этой поверхности, хотя на самом деле это самая далекая от нас точка. В результате мы неправильно интерпретируем движение маски, и, когда она поворачивается к нам внутренней стороной, нам кажется, что она вращается в противоположную сторону.[127]
Рис. 5.8. Иллюзия выпуклой маски.
Фотографии вращающейся маски Чарли Чаплина (последовательность справа налево и сверху вниз). Лицо внизу справа вогнутое, потому что мы смотрим на маску изнутри, но мы невольно воспринимаем его как выпуклое, с выступающим носом. В данном случае наше знание того, что лица выпуклы, берет верх над тем, что мы знаем о свете и тени.
Как наши действия рассказывают нам о мире
Для мозга между восприятием и действиями существует тесная связь. Наше тело служит нам, чтобы познавать окружающий мир. Мы взаимодействуем с окружающим миром посредством своего тела и смотрим, что из этого выйдет. Этой способности тоже не хватало ранним компьютерам. Они просто смотрели на мир. Они ничего не делали. У них не было тел. Они не делали предсказаний. Восприятие давалось им с таким трудом в том числе и по этой причине.
Даже самые простые движения помогают нам отделять один воспринимаемый объект от другого. Когда я смотрю на свой сад, я вижу забор, за которым стоит дерево. Откуда я знаю, какие коричневые пятна относятся к забору, а какие к дереву? Если согласно моей модели мира забор стоит перед деревом, то я могу предсказать, что ощущения, связанные с забором и с деревом, будут меняться по-разному, когда я двигаю головой. Так как забор расположен ближе ко мне, чем дерево, фрагменты забора движутся у меня перед глазами быстрее, чем фрагменты дерева. Мой мозг может объединить все эти фрагменты дерева благодаря их согласованному движению. Но движусь при этом я, воспринимающий, а не дерево и не забор.
Рис. 5.9. Мы можем понять, где что находится, посредством движения.
Когда мы движемся мимо двух деревьев, елка, расположенная ближе, сдвигается в нашем поле зрения быстрее, чем лиственное дерево, расположенное дальше. Это явление называют параллаксом движения. Оно помогает нам понять, что елка расположена ближе к нам, чем лиственное дерево.
Простые движения помогают нашему восприятию. Но движения, совершаемые с некоторой целью, которые я буду называть действиями, помогают восприятию еще больше. Если передо мной стоит бокал с вином, я осознаю, какой он формы и какого цвета. Но я не осознаю, что мой мозг уже рассчитал, какое положение должна занять моя рука, чтобы взять этот бокал за ножку, и предчувствует, какие ощущения возникнут при этом в моих пальцах. Эти приготовления и предчувствия происходят даже в том случае, если я не собираюсь брать в руку этот бокал (см. рис. 4.6). Часть мозга отображает окружающий мир в свете наших действий, например действий, нужных, чтобы выйти из комнаты или чтобы взять со стола бутылку. Наш мозг непрерывно и машинально предсказывает, какими движениями будет лучше всего осуществить то или иное действие, которое нам может понадобиться совершить. Всякий раз, когда мы совершаем какое-либо действие, эти предсказания проверяются, и наша модель мира совершенствуется, исходя из ошибок в таких предсказаниях опыт обращения с бокалом вина улучшает мое представление о его форме. В будущем мне будет проще понять, какой он формы, посредством такого несовершенного и неоднозначного чувства, как зрение.
Наш мозг познаёт окружающий мир, создавая модели этого мира. Это не какие-то произвольные модели. Они постоянно совершенствуются, чтобы выдавать нам как можно лучшие предсказания наших ощущений, возникающих при взаимодействии с окружающим миром. Но мы не осознаём работы этого сложного механизма. Так что же мы вообще осознаём?
Мы воспринимаем не мир, а его модель, создаваемую мозгом
То, что мы воспринимаем, это не те необработанные и неоднозначные сигналы, поступающие из окружающего мира к нашим глазам, ушам и пальцам. Наше восприятие намного богаче – оно совмещает все эти необработанные сигналы с сокровищами нашего опыта.[128] Наше восприятие – это предсказание того, что должно быть в окружающем нас мире. И это предсказание постоянно проверяется действиями.
Но любая система, когда дает сбои, совершает определенные характерные ошибки. По счастью, эти ошибки весьма информативны. Они не только важны для самой системы тем, что она учится на них, они также важны для нас, когда мы наблюдаем за этой системой, чтобы разобраться, как она работает. Они дают нам представление о том, как устроена эта система. Какие ошибки будет совершать система, работающая путем предсказаний? У нее будут возникать проблемы во всякой ситуации, допускающей неоднозначную трактовку, например когда два разных объекта окружающего мира вызывают одно и то же ощущение.[129] Такие проблемы обычно решаемы за счет того, что одна из возможных трактовок намного вероятнее другой. Весьма маловероятно, что в этой комнате сейчас находится носорог. Но в результате система оказывается обманута, когда маловероятная трактовка на деле и есть правильная. Многие зрительные иллюзии, которые так любят психологи, работают именно потому, что обманывают наш мозг подобным образом.
Очень странная форма комнаты Эймса спланирована так, чтобы вызывать у нас те же зрительные ощущения, что и обычная прямоугольная комната (см. рис. 2.8). Обе модели, комнаты странной формы и обычной прямоугольной комнаты, позволяют одинаково хорошо предсказать то, что видят наши глаза. Но на опыте мы имели дело с прямоугольными комнатами настолько чаще, что поневоле видим и комнату Эймса прямоугольной, и нам кажется, что люди, которые движутся по ней из угла в угол, немыслимым образом увеличиваются и уменьшаются. Априорная вероятность (ожидание) того, что мы смотрим на комнату такой странной формы, столь невелика, что наш байесовский мозг не берет в расчет необычные сведения о возможности такой комнаты.
Но что происходит, когда у нас нет априорных оснований предпочесть одну трактовку другой? Так бывает, например, с кубом Неккера. Мы могли бы увидеть его как довольно сложную плоскую фигуру, но на опыте мы намного чаще имели дело с кубами. Поэтому мы видим куб. Проблема в том, что это могут быть два разных куба. У одного передняя сторона расположена вверху справа, а у другого – внизу слева. У нас нет никаких оснований предпочесть одну трактовку другой, поэтому наше восприятие самопроизвольно переключается с одного возможного куба на другой и обратно.
Еще более сложные изображения, такие как фигура Рубина и портрет жены или тещи, демонстрируют спонтанные переключения с одного воспринимаемого образа на другой, также связанные с тем, что обе трактовки в равной степени правдоподобны. Тот факт, что наш мозг реагирует подобным образом на двусмысленные изображения, лишний раз свидетельствует о том, что наш мозг представляет собой байесовское устройство, познающее окружающий мир путем предсказаний и поиска причин наших ощущений.
Рис. 5.10. Двусмысленные изображения
Цвета существуют только у нас в голове
Вы могли бы возразить, что все эти двусмысленные изображения изобретены психологами. Мы не встречаем таких объектов в реальном мире. Это верно. Но реальному миру тоже свойственна неоднозначность. Рассмотрим проблему цвета. Мы узнаём цвет объектов исключительно по отражаемому ими свету. Цвет определяется длиной волны этого света. Длинные волны воспринимаются как красный цвет, короткие – как фиолетовый, а волны промежуточной длины – как остальные цвета. У нас в глазах есть специальные рецепторы, чувствительные к свету с разной длиной волны. Стало быть, сигналы, идущие от этих рецепторов, говорят нам, какого цвета помидор? Но здесь возникает проблема. Ведь это не цвет самого помидора. Это характеристика света, отражаемого помидором. Если осветить помидор белым светом, он отражает красный свет. Поэтому он и выглядит для нас красным. Но что если осветить помидор синим цветом? Теперь он может отражать только синий цвет. Будет ли он теперь выглядеть синим? Нет. Мы по-прежнему воспринимаем его как красный. Судя по цветам всех видимых объектов, наш мозг решает, что они освещены синим цветом, и предсказывает "истинный" цвет, которым должен обладать каждый из этих объектов. Наше восприятие определяется этим предсказанным цветом, а не длиной волны света, попадающего в наши глаза. Учитывая, что мы видим этот предсказанный, а не "истинный" цвет, можно создать эффектные иллюзии, в которых элементы рисунка, от которых поступает цвет с одинаковой длиной волны, кажутся окрашенными по-разному (см. илл. 6 на цветной вставке).[130]