Категории
Самые читаемые
onlinekniga.com » Научные и научно-популярные книги » Физика » Скрытая реальность. Параллельные миры и глубинные законы космоса - Брайан Грин

Скрытая реальность. Параллельные миры и глубинные законы космоса - Брайан Грин

Читать онлайн Скрытая реальность. Параллельные миры и глубинные законы космоса - Брайан Грин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 25 26 27 28 29 30 31 32 33 ... 110
Перейти на страницу:

На сегодняшний день наиболее вероятно, что даже самые многообещающие положительные результаты экспериментов не смогут определённо подтвердить правоту теории струн, а отрицательные результаты, скорее всего, не смогут её опровергнуть.{34} При этом надо не ошибиться. Если мы обнаружим доказательства существования дополнительных измерений, суперсимметрии, чёрных мини-дыр или любого из других возможных проявлений теории струн, это станет важной вехой в поиске единой теории. Это придаст нам уверенность, что избранная нами математическая дорога ведёт в правильном направлении.

Теория струн, сингулярности и чёрные дыры

В большинстве ситуаций квантовая механика и гравитация успешно игнорируют друг друга, при этом первая применяется к малым объектам, таким как молекулы и атомы, а вторая к большим объектам, соразмерным звёздам и галактикам. Однако обе теории вынуждены встречаться в мирах, известных как сингулярности. Сингулярность — это любая физическая ситуация, реальная или гипотетическая, которая настолько экстремальна (огромные массы, малый размер, гигантская кривизна пространства, проколы или разрывы в самой пространственно-временной структуре), что квантовая механика и общая теория относительности ведут себя неадекватно, выдавая результаты, сродни сообщению об ошибке на экране калькулятора при попытке разделить на ноль.

Цель любой квантовой теории гравитации состоит в том, чтобы свести воедино квантовую механику и гравитацию таким образом, чтобы сингулярности исчезли. Разработанный математический аппарат должен быть непротиворечив даже в момент Большого взрыва или в центре чёрной дыры[25] и давать разумное описание ситуаций, которые в течение длительного времени ставили исследователей в тупик. Именно в этом направлении теория струн достигла своих самых впечатляющих успехов, уменьшив список сингулярностей.

В середине 1980-х годов группа исследователей, состоящая из Ланса Диксона, Джеффа Харви, Кумруна Вафы и Эдварда Виттена, пришла к выводу, что некоторые проколы в ткани пространства (называемые сингулярностями орбифолда), которые доставляли много хлопот уравнениям Эйнштейна, прекрасно ведут себя в теории струн. Ключ к успеху состоял в том, что струна в отличие от точечной частицы не может свалиться в такой прокол. Поскольку струна — это протяжённый объект, она может удариться о прокол, может обмотаться вокруг него либо воткнуться в него, но подобного рода умеренные взаимодействия совершенно не портят уравнения теории струн. Это важно не потому, что такие изъяны в пространстве действительно имеют место — может, да, а может, и нет, — а потому, что именно таких свойств мы хотим от квантовой теории гравитации: способности работать осмысленно в ситуации, когда по отдельности отказывают как общая теория относительности, так и квантовая механика.

В 1990-х годах в нашей работе с Полом Аспинволлом и Дэвидом Моррисоном, а также независимо Эдвардом Виттеном было установлено, что более сильные сингулярности (известные как флоп-сингулярности), возникающие при сжатии сферической области пространства до бесконечно малого размера, тоже описываются теорией струн. Интуиция подсказывает, что струна при движении может накрутиться на такую сжатую область пространства, подобно обручу на мыльный пузырь, создавая нечто вроде кругового ограждения. Вычисления показывают, что такой «струнный щит» сводит на нет любые потенциально разрушительные последствия и гарантирует, что уравнения теории струн остаются непротиворечивыми — никаких ошибок типа «1 разделить на 0», — даже когда отказывают уравнения общей теории относительности.

За прошедшие годы исследователи показали, что множество других, более сложных сингулярностей (с названиями конифолд, ориентифолд, энханкон и так далее) также полностью контролируются теорией струн. Таким образом, имеется растущий список ситуаций, в которых Эйнштейн, Бор, Гейзенберг, Уилер и Фейнман воскликнули бы: «Мы просто не понимаем, что происходит!», но теория струн даёт полный и непротиворечивый ответ.

Достигнут значительный прогресс. Но остаётся проблема устранения с помощью теории струн сингулярностей чёрных дыр и Большого взрыва, более суровых, чем рассмотренные ранее. Идя к этой цели, теоретики приложили немало усилий, и они добились значительных успехов. Но если подытожить, то впереди ещё долгий путь, прежде чем наиболее трудные и важные сингулярности будут полностью осознаны.

Тем не менее одно важное открытие пролило свет на теорию чёрных дыр. В 1970-х годах в работах Якоба Бекенштейна и Стивена Хокинга было установлено, что чёрные дыры обладают определённой степенью беспорядка, известной как энтропия (см. главу 9). Подобно тому как беспорядок, царящий в ящике для носков, отражает множество способов их случайного расположения, так и беспорядок внутри чёрной дыры, согласно фундаментальным физическим законам, свидетельствует о множестве вариантов случайного размещения её внутренностей. Однако даже после долгих усилий физикам не удалось достаточно хорошо разобраться в том, как устроены внутренности чёрных дыр, не говоря уж о том, чтобы проанализировать возможные способы их размещения. Струнные теоретики Эндрю Строминджер и Кумрун Вафа вырвались из этого тупика. Смешав фундаментальные ингредиенты теории струн (с некоторыми из них мы встретимся в главе 5), они построили математическую модель беспорядка чёрной дыры, достаточно простую и понятную, чтобы извлечь из неё численное значение энтропии. Полученный результат в точности совпал с ответом Бекенштейна и Хокинга. Хотя осталось много открытых вопросов (например, точная идентификация составляющих чёрной дыры), эта работа стала первым надёжным квантово-механическим анализом беспорядка чёрной дыры.[26]

Замечательный прогресс в изучении сингулярности чёрной дыры и её энтропии привёл физическую общественность к обоснованной убеждённости, что со временем оставшиеся трудности, связанные с чёрными дырами и Большим взрывом, будут преодолены.

Теория струн и математика

Сравнение с экспериментальными или наблюдательными данными является единственным способом определить, правильно ли теория струн описывает природу. Но эта цель оказалась труднодостижимой. Несмотря на все успехи теории струн, она остаётся исключительно математической конструкцией. Но было бы неправильным считать теорию струн простым потребителем математических идей. Наоборот, некоторые важные струнные достижения являются вкладом в развитие математики.

Как известно, работая над созданием общей теории относительности, Эйнштейн перерыл всю математическую литературу, пытаясь найти строгий язык описания искривлённых пространств. Более ранние математические достижения таких математиков, как Карл Фридрих Гаусс, Бернхард Риман и Николай Лобачевский, подвели под общую теорию относительности крепкий фундамент. В некотором смысле, сейчас теория струн помогает выплатить интеллектуальный долг Эйнштейна, подталкивая развитие новых математических направлений. Тому есть много примеров, но я приведу лишь один, который целиком отражает суть струнных открытий в математике.

В общей теории относительности выстроена прочная связь между геометрией пространства-времени и наблюдаемой физикой. Уравнения Эйнштейна, дополненные распределением материи и энергии в некоторой заданной области, определяют конечную форму пространства-времени. Различные физические условия (то есть различные конфигурации масс и энергии) приводят к различной форме пространства-времени; разные виды пространства-времени соответствуют физически различным условиям. Хотите узнать, каково это — падать в чёрную дыру? Проведите вычисления на основе пространственно-временной геометрии, открытой Карлом Шварцшильдом при изучении сферических решений уравнений Эйнштейна. А что если чёрная дыра быстро вращается? Тогда вычисляйте с помощью геометрии, открытой в 1963 году новозеландским математиком Роем Керром. Геометрия и физика в общей теории относительности подобны инь и ян.

Теория струн резко меняет подобное заключение, утверждая, что могут быть различные формы пространства-времени, приводящие, тем не менее, к физически неотличимым описаниям реальности.

Это можно осмыслить следующим образом. Начиная с античных времён и до эры современной математики, геометрические пространства рассматриваются как набор точек. Например, мячик для пинг-понга состоит из точек, составляющих его поверхность. До теории струн базовые конституэнты вещества также считались точками, точечными частицами, и такая общность основных ингредиентов говорила о согласованности между геометрией и физикой. Однако в теории струн основным объектом является не точка. Это струна. Отсюда следует, что с теорией струн должен быть связан новый тип геометрии, основанный не на точках, а на петлях. Эта новая геометрия получила название струнной геометрии.

1 ... 25 26 27 28 29 30 31 32 33 ... 110
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу Скрытая реальность. Параллельные миры и глубинные законы космоса - Брайан Грин.
Комментарии