Математические головоломки и развлечения - Мартин Гарднер
Шрифт:
Интервал:
Закладка:
Существует три различных гексагексафлексагона: первый складывают из прямой полоски бумаги, второй — из полоски, предварительно сложенной в виде шестиугольника, и третий — из полоски, форма которой напоминает лист клевера. Разновидностей декагексафлексагона (с девятью поверхностями) намного больше — их 82.
Заготовки для всех 82 типов декагексафлексагонов имеют вид бумажных полос, сложенных самым причудливым образом. В принципе можно построить флексагон с любым числом поверхностей, но если поверхностей больше 10, то число разновидностей флексагонов катастрофически возрастает. Кстати, все флексагоны с четным числом поверхностей делаются из двусторонних полос, а флексагоны с нечетным числом поверхностей, подобно листу Мёбиуса, имеют лишь одну сторону.
Полная математическая теория флексагонов была разработана в 1940 году Тьюки и Фейнманом. Помимо всего прочего, теория указывает точный способ построения флексагона с любым числом сторон, причем именно той разновидности, которая требуется. В своем полном виде эта теория так никогда и не была опубликована, хотя отдельные ее части впоследствии были открыты заново другими математиками. Среди энтузиастов «флексологии» следует назвать отца Таккермана, известного физика Луи Таккермана.
Таккерман-старший внес существенный вклад в теорию флексагонов, разработав простой, но эффективный способ изображать «путь Таккермана» в виде дерева.
Нападение японцев на Пирл-Харбор приостановило работу «Флексагонного комитета», а война вскоре разбросала всех четырех его учредителей в разные стороны. Стоун стал читать курс математики в Манчестерском университете, Фейнман, известный физик-теоретик, работал в Калифорнийском технологическом институте, Тьюки занял пост профессора математики в Принстоне, его блестящие работы по топологии и теории вероятностей снискали ему мировую известность. Таккерман — видный математик, он участвовал в разработке проекта быстродействующего компьютера, который был создан в Институте высших исследований.
Комитет все надеялся как-нибудь собраться и написать одну-две статьи с подробным изложением теории флексатонов. Но этого не случилось, а потому ничто не мешает нам, играя с самодельными флексагонами, попытаться вывести собственную теорию.
* * *
Прежде чем приступать к изготовлению флексагона, полезно несколько раз перегнуть в обе стороны его развертку по всем линиям сгиба. Это намного облегчает последующие манипуляции с флексатоном. Иногда читатели делали более долговечные модели, вырезав треугольники из картона или металла и соединив их липкой лентой или же наклеив на длинную полоску ткани. Между треугольниками оставались небольшие зазоры, что позволяло легко сгибать флексагоны. Таккерман-старший обычно пользовался стальной пластинкой таких размеров, что, обернув вокруг нее бумажную ленту, можно быстро получать сложенную особым образом полоску, показанную на рис. 2а. Это давало существенный выигрыш во времени при изготовлении флексагонов из линейной цепочки треугольников.
Из писем читателей я узнал множество способов раскраски флексагонов, которые приводят к интересным головоломкам и самым неожиданным зрительным эффектам. Так, каждая поверхность гексагексафлексагона может появляться по крайней мере в двух различных видах в зависимости от того, как повернуты относительно друг друга образующие ее треугольники. Например, если каждую поверхность разделить на части так, как показано на рис. 5, и выкрасить области А, В и С в различные цвета, то в центре видимой поверхности могут появиться и области А (именно этот случай и показан на рис. 5), и области В, и области С.
Рис. 5
На рис. 6 изображен геометрический узор, который, будучи нарисован на каждый раз принимая иной вид.
Рис. 6
Вращая треугольники, из которых составлен правильный шестиугольник, мы получаем 18 различных разновидностей шестиугольников. Если гексагексафлексагон сделан из прямой полоски бумаги, то три из этих 18 шестиугольников никогда не встретятся нам, как бы мы ни складывали наш флексагон. Это навело одного из наших читателей на мысль наклеить на каждый разворот гексафлексагона части трех различных картинок. Перегибая определенным образом флексагон, мы будем видеть по очереди в центре открывшейся поверхности одну из картинок, а на периферии — фрагменты двух других изображений. К трем «скрытым» шестиугольникам, которые никогда полностью не появляются на видимой стороне флексагона, он приклеил разрезанные на части портреты трех очаровательных девушек, которых зритель, несмотря на все свои старания, никак не может рассмотреть во всех подробностях.
Свою игрушку читатель назвал гексагексафрастрагоном.[4] Другой читатель добился аналогичных результатов, склеив два смежных треугольника. Из-за этого исчез целый шестиугольник, и жертвы невинного розыгрыша тщетно пытались найти недостающий разворот флексагона. Неудача казалась тем более непонятной, что, заглянув внутрь флексагона, они собственными глазами видели части таинственно исчезнувшей поверхности!
Утверждение о том, что шестиугольники, возникающие при развороте гексагексафлексагонов, могут быть только 15 различных типов, необходимо несколько уточнить. Несимметричная раскраска поверхностей гексагексафлексагонов позволяет обнаружить любопытный факт: три из 15 допустимых шестиугольников имеют свои зеркально-симметричные пары. Перенумеровав внутренние углы каждого из допустимых шестиугольников по часовой стрелке цифрами от 1 до 6, мы обнаружим, что при складывании флексагонов три шестиугольника переходят в зеркально-симметричные шестиугольники, у которых углы перенумерованы теми же цифрами, но расположенными в обратном порядке. Если принять во внимание эту асимметрию, то можно сказать, что шесть поверхностей гексафлексагона могут порождать 18 различных шестиугольников.
Для тех, кто захочет сам изготовить флексагоны других типов, отличные от рассмотренных, мы приводим краткий обзор флексагонов низших порядков.
1. Унагексафлексагон. Полоску из трех треугольников разглаживают и концы ее соединяют так, чтобы получился лист Мёбиуса с треугольным краем (более изящная модель листа Мёбиуса с треугольным краем рассматривается в главе 7). Поскольку лист Мёбиуса имеет только одну сторону и состоит из шести треугольников, его можно назвать унагексафлексагоном, хотя, разумеется, у него нет шести сторон и он не складывается.
2. Дуогексафлексагон представляет собой просто шестиугольник, вырезанный из бумаги. У него две стороны, но он не складывается.
3. Тригексафлексагон. Существует только одна разновидность этого флексагона, именно она и была уже описана нами.
4. Тетрагексафлексагон также существует лишь в единственном варианте. Его складывают из пилообразной полоски, изображенной на рис. 7а.
5. Пентагексафлексагон. Единственную разновидность этого флексагона складывают из полоски, показанной на рис. 7б.
6. Гексагексафлексагон. Существует три различных типа этих флексагонов, каждый из них обладает неповторимыми свойствами. Мы дали описание лишь одного типа. Два остальных можно сделать из полосок, форма которых показана на рис. 7 в.
7. Гептагексафлексагон. Его складывают из трех полосок бумаги, изображенных на рис. 7 г.
Первую полоску можно сложить двумя различными способами, поэтому общее число возможных форм гептагексафлексагонов равно 4. Третью форму этих флексатонов конструируют из полоски бумаги, имеющей вид восьмерки с перекрывающимися частями. Это первая из фигур, которые Луи Таккерман назвал «флексагонными улицами». Поверхности этой фигуры можно перенумеровать так, что на «пути Таккермана» они будут встречаться «по порядку номеров», как дома на улице.
Рис. 7 Зигзагообразные полоски бумаги для складывания гексафлексагонов. Заштрихованные треугольники служат клапанами для склеивания.
Существует 12 различных типов октагексафлексагонов, 27 типов эннагексафлексагонов и 82 типа декагексафлексагонов. Точное число флексагонов каждого порядка определяется неоднозначно и зависит от того, что следует понимать под «различными» флексагонами. Например, все флексагоны имеют асимметричную структуру и делятся на правые и левые, но зеркально-симметричные формы флексагонов вряд ли следует считать самостоятельными. Более подробно о числе неэквивалентных флексагонов каждого порядка можно прочитать в статье Оукли и Визнера.[5]