Категории
Самые читаемые
onlinekniga.com » Научные и научно-популярные книги » Прочая научная литература » 100 великих заблуждений - Станислав Зигуненко

100 великих заблуждений - Станислав Зигуненко

Читать онлайн 100 великих заблуждений - Станислав Зигуненко

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 18
Перейти на страницу:

Оказывается, например, что Ньютон никогда не сидел под деревом в ожидании, что ему на голову свалится то самое историческое яблоко. Анекдот про него придумала его племянница – веселая девушка, которой до смерти надоели расспросы газетных репортеров и просто любопытствующих, как ее дядя делает свои великие открытия.

Сам Ньютон тоже отделался от расспросов довольно туманной фразой. Дескать, если он и видел дальше других, то только потому, что стоял на плечах гигантов. Намекая тем самым на то, что, в частности, природой тяготения до него занимались и итальянец Галилео Галилей, бросавший вниз предметы со знаменитой своим наклоном Пизанской башни, и соотечественник Ньютона Роберт Гук, и многие другие ученые, начиная с древних греков.

Скажем, тот же Гук, докладывая в 1666 году Королевскому обществу об опытах, доказывающих зависимость веса тела от высоты, практически пришел к той же мысли, но не смог ее сформулировать столь же четко, как это сделал Ньютон. А на само явление ученые обратили внимание еще в III веке до н. э., когда впервые было высказано предположение, что приливы и отливы на Земле происходят под влиянием тяготения Луны и Солнца.

Да и сам Ньютон, как показывают нынешние исследования, размышлял над природой тяготения около двадцати лет, прежде чем смог сформулировать свой знаменитый закон. За это время можно было до многого додуматься и без помощи созревшего яблока.

Но вот что интересно. Закон был сформулирован, формула исправно действует и по сей день – полеты современных космических кораблей тому лишнее подтверждение, – однако, как уже говорилось, никто толком не знает, что такое тяготение. Какова механика его действия?

Интерферометр Майкельсона

Разобраться в этом попытался молодой преподаватель математики и физики Георг Луи Лесаж. В один из майских дней 1749 года он объяснял своим воспитанницам закон всемирного тяготения. Но когда одна из особо любопытных учениц спросила, может ли учитель наглядно объяснить, как именно действует это самое тяготение, тот впал в задумчивость. И единственное, что мог придумать для наглядности: дескать, небесные тела окутаны чем-то вроде тончайшей, но прочной кисеи. Она-то и удерживает планеты, звезды и другие небесные тела на своих местах.

Ученицы покивали головами: дескать, насчет кисеи все понятно, но сам учитель остался весьма недоволен своим объяснением. Что это еще за «кисея» такая в мировом пространстве?

Размышляя, однажды он вспомнил слова знаменитого Декарта: «Мы считаем сосуд пустым, когда в нем нет воды. На самом деле в таком сосуде остается воздух. Если из “пустого” сосуда убрать и воздух, в нем опять что-то должно остаться, но мы это “что-то” просто не чувствуем».

И тогда молнией вспыхнула мысль: небесные тела не притягиваются, а подталкиваются друг к другу! И подталкивает их «нечто», которое мы не ощущаем…

После Лесажа подобная мысль приходила в головы многих других ученых. И поначалу все они были счастливы своим открытием. Суть его можно описать так: представим себе, что все пространство между небесными телами заполнено не кисеей, а еще более тонкой субстанцией – неким газом, состоящим из крошечных частиц, летающих во всех направлениях. При определенных условиях, наталкиваясь, скажем, на Солнце и Землю, эти частицы и подталкивают их друг к другу, заставляют нашу планету не удаляться чересчур далеко от светила.

Однако чтобы удовлетворить тем условиям, при которых подобное подталкивание возможно, такие частицы, оказывается, должны обладать удивительными свойствами: двигаться со сверхсветовыми скоростями и, пробегая колоссальные расстояния, не сталкиваться друг с другом. Более того, сами небесные тела тоже не являются преградой для подобных частиц: они пронизывают их насквозь, лишь слегка задерживаясь в своем движении.

Тем не менее, за неимением лучшего, идею приняли в качестве рабочей гипотезы. Газ назвали мировым эфиром, а то, из чего он состоит, – частицами Лесажа.

Теперь оставалось обнаружить хотя бы следы присутствия мирового эфира на практике – и дело в шляпе.

Трудную задачу – поймать неуловимые частицы – взял на себя американский исследователь Альберт Майкельсон. Первый эксперимент был затеян им в 1881 году. Однако его точность не удовлетворила ни самого следователя, ни его последователей, среди которых выделяются своей настойчивостью и тщанием в работе его коллеги и помощники – Морли и Миллер. И они стали повторять опыты вновь и вновь, пока не добились приемлемых результатов.

Суть же идеи заключалась в следующем. Наша планета, как известно, движется по своей орбите вокруг Солнца. Если в этот момент она «обдувается» с какой-либо стороны «эфирным ветром», то логично предположить, что на каком-то участке орбиты этот «ветер» будет попутным, а на каком-то встречным. Стало быть, на одном участке эфир будет помогать солнечным лучам добегать до нашей планеты, подгоняя их, а на другом – напротив, препятствовать их движению.

Скорость света к тому времени уже определили. Округленно она равна 300 тыс. км/с. Приблизительная скорость частиц Лесажа тоже предположительно была известна. Согласно некоторым выкладкам, которые мы здесь приводить не будем, чтобы не загромождать наше повествование, получалось, что она должна быть равна примерно 30 км/с.

Оставалось таким образом в течение года аккуратнейшим образом замерять скорость движения частиц света – фотонов – в надежде зафиксировать изменения их скорости. Для этой цели Майкельсоном, Морли и Миллером была построена уникальная экспериментальная установка – интерферометр Майкельсона.

Схема его такова. Свет, приходящий от солнца, падал на полупрозрачное зеркало, расположенное к нему под углом 45 градусов. Часть его проходила сквозь зеркало, а часть отражалась под прямым углом. Затем оба луча – прошедший прямо и повернувший под прямым углом – доходили до обычных, непрозрачных зеркал, отражались от них и, возвращаясь назад, попадали на то же полупрозрачное зеркало. Теперь часть лучей, прошедших сквозь это зеркало, насквозь могла повернуть под прямым углом, в то время как другая часть лучей, уже однажды совершивших такой поворот, могла пройти сквозь него прямо.

Ход этих лучей для наглядности показан на схеме, так что вы можете проследить, каким образом оба луча попадали на экран и отражались на нем, образуя интерференционную картину, состоящую из светлых и темных полос.

Если для прохождения света по обоим путям требуется одинаковое время, то на экране должна получиться одна картинка, если же разная – вследствие того, что один из лучей должен двигаться по потоку эфира (или против него), а другой поперек, – то и картинка будет другая…

Даже рассказать об этом опыте оказывается непросто, а уж провести его… В общем, команда физиков билась несколько лет, пока у них не стали получаться результаты, которым можно было доверять.

И вот тут случилась прямо-таки детективная история. Если вы заглянете в учебник физики, то скорее всего прочтете, будто бы исследователи не заметили никакой разницы в скорости движения лучей. На основании этого и был сделан вывод, что никакого движения эфира замечено не было, возникли сомнения в его существовании, и, в конце концов, теория мирового эфира была отвергнута как ошибочная.

Однако при этом никто из авторов учебников не дает себе труда заглянуть в первоисточники. Если ознакомиться с работами Майкельсона на английском языке, то приходишь к прямо противоположному результату. Оказывается, Майкельсон прямо указывает, что в 1887 году он зарегистрировал эфирный ветер. Правда, его скорость оказалась не 30 км/с, как предполагалось, а существенно меньше – всего лишь около двух километров в секунду.

В 1904 году аналогичные опыты провел Э. Морли и получил скорость эфирного ветра равной 3 км/с. Сочтя, что на точность результата может влиять скорость движения самой атмосферы, несколько лет спустя он повторил эксперименты, поднявшись на вершину горы Маунт-Вилсон. Там результаты опытов показали скорость около 10 км/с!

Но на эти результаты уже никто не обратил внимания. И вот почему. В начале века первую скрипку в мировой физике начинает играть великий немецкий теоретик Альберт Эйнштейн. В начале века он создает и публикует специальную теорию относительности, а в 1915–1916 годах приступает к возведению общей теории относительности.

Свои теории Эйнштейн строит на основании постулатов. То есть принимает, например, как факт, без всяких на то доказательств, что скорость света – есть наивысшая в нашем мире, и она никоим образом превышена быть не может. Что время и пространство связаны с гравитацией… И некоторые другие.

Среди прочего, в специальной теории относительности он начисто отрицает существование в пространстве мирового эфира. Дескать, опыты не показывают его наличия, стало быть, его и нет. Обойдемся и без него…

1 2 3 4 5 6 7 8 9 10 ... 18
Перейти на страницу:
На этой странице вы можете бесплатно читать книгу 100 великих заблуждений - Станислав Зигуненко.
Комментарии